某學生在高三學年最近九次考試中的數(shù)學成績加下表:
第x考試123456789
數(shù)學成績y(分)121119130106131123110124116
設回歸直線方程y=bx+a,則點(a,b)在直線x+5y-10=0的( 。
A.左上方B.左下方C.右上方D.右下方
由題意,
.
x
=45,
.
y
=120,
9
i=1
xi2
=286,
9
i=1
xiyi
=5372,
∴b=
5372-9×45×120
286-9×452
≈-2.4,
∴a=120-(-2.4)×45≈229
點(229,-2.4)代入直線x+5y-10=0,可得229-14-10>0,
∴點(229,-2.4)在直線x+5y-10=0的右上方.
故選:C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某超市在一段時間內的某種商品的價格x(元)與銷售量y(kg)之間的一組數(shù)據(jù)如下表所示:
價格x(元)11.411.611.812.012.2
銷售量y(kg)112110107105103
(Ⅰ)畫出散點圖;
(Ⅱ)求出y對x的回歸的直線方程;
(Ⅲ)當價格定為11.9元時,預測銷售量大約是多少?
b
=
n
i=1
(x1-
.
x
)(y1-
.
y
)
n
i=1
(x1-
.
x
)
2
=
n
i=1
x1y1-n
.
x
.
y
n
i=1
x
21
-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某種產品的廣告費用支出X與銷售額之間有如下的對應數(shù)據(jù):
x24568
y3040605070
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10銷售收入y的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

廢品率x%與每噸生鐵成本y(元)之間的回歸直線方程為
?
y
=234+3x,表明( 。
A.廢品率每增加1%,生鐵成本增加3x元
B.廢品率每增加1%,生鐵成本每噸增加3元
C.廢品率每增加1%,生鐵成本增加234元
D.廢品率不變,生鐵成本為234元

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩個變量有線性相關關系且正相關,則回歸直線方程中,
y
=bx+a
的系數(shù)b( 。
A.b>0B.b<0C.b=0D.b=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在兩個變量y與x的回歸模型中,分別選擇了4個不同的模型,它們的相關指數(shù)R2分別為:模型1的相關指數(shù)R2為0.98,模型2的相關指數(shù)R2為0.80,模型3的相關指數(shù)為0.50,模型4的相關指數(shù)為0.25.其中擬合效果最好的是( 。
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某個體服裝店經(jīng)營某種服裝,在某周內獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關系如下表:
x3456789
y66697481899091
(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內某天銷售服裝13件,估計可獲純利多少元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

改革開放以來,我國高等教育事業(yè)有了突飛猛進的發(fā)展,有人記錄了某村2001到2005年五年間每年考入大學的人數(shù),為了方便計算,2001年編號為1,2002年編號為2,…,2005年編號為5,數(shù)據(jù)如下:
年份(x)12345
人數(shù)(y)3581113
(1)從這5年中隨機抽取兩年,求考入大學的人數(shù)至少有1年多于10人的概率.
(2)根據(jù)這5年的數(shù)據(jù),利用最小二乘法求出y關于x的回歸方程
y
=
b
x+
a
,并計算第8年的估計值.
參考:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在一次惡劣氣候的飛機航程中,調查了男女乘客在飛機上暈機的情況:男乘客暈機的有24人,不暈機的有31人;女乘客暈機的有8人,不暈機的有26人.請你根據(jù)所給數(shù)據(jù)判斷是否在惡劣氣候飛行中,男人比女人更容易暈機.

查看答案和解析>>

同步練習冊答案