平面上有n個圓,其中每兩個圓之間都相交于兩個點,每三個圓都無公共點,它們將平面分成f(n)塊區(qū)域,則f(n)的表達式是( )
A.2n
B.2n-(n-1)(n-2)(n-3)
C.n3-5n2+10n-4
D.n2-n+2
【答案】分析:我們由兩個圓相交將平面分為4分,三個圓相交將平面分為8分,四個圓相交將平面分為14部分,我們進行歸納推理,易得到結(jié)論,再利用數(shù)學歸納法的證明方法,驗證n=1時命題成立,然后假設(shè)n=k時命題成立,證明n=k+1時命題也成立即可.
解答:解:∵一個圓將平面分為2份
兩個圓相交將平面分為4=2+2份,
三個圓相交將平面分為8=2+2+4份,
四個圓相交將平面分為14=2+2+4+6份,
…
平面內(nèi)n個圓,其中每兩個圓都相交于兩點,且任意三個圓不相交于同一點,
則該n個圓分平面區(qū)域數(shù)f(n)=2+(n-1)n=n2-n+2
證明:(1)當n=1時,一個圓把平面分成兩個區(qū)域,而12-1+2=2,命題成立.
(2)假設(shè)n=k(k≥1)時,命題成立,即k個圓把平面分成k2-k+2個區(qū)域.
當n=k+1時,第k+1個圓與原有的k個圓有2k個交點,這些交點把第k+1個圓分成了2k段弧,
而其中的每一段弧都把它所在的區(qū)域分成了兩部分,因此增加了2k個區(qū)域,
共有k2-k+2+2k=(k+1)2-(k+1)+2個區(qū)域.
∴n=k+1時,命題也成立.
由(1)、(2)知,對任意的n∈N*,命題都成立.
故選D.
點評:本題主要考查了進行簡單的合情推理.歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).