【題目】已知拋物線,直線與交于、兩點(diǎn),且OA·OB=2,其中為原點(diǎn).
(1)求拋物線的方程;
(2)點(diǎn)坐標(biāo)為,記直線、的斜率分別為,證明:為定值.
【答案】(1)(2)詳見解析
【解析】
試題分析:(1)將直線與拋物線聯(lián)立,消去y,得到關(guān)于x的方程,得到兩根之和、兩根之積,設(shè)出A、B的坐標(biāo),代入到中,化簡表達(dá)式,再將上述兩根之和兩根之積代入得到p,從而求出拋物線標(biāo)準(zhǔn)方程.(2)先利用點(diǎn)A,B,C的坐標(biāo)求出直線CA、CB的斜率,再根據(jù)拋物線方程輪化參數(shù)y1,y2,得到k和x的關(guān)系式,將上一問中的兩根之和兩根之積代入,化簡表達(dá)式得到常數(shù)即可
試題解析:(Ⅰ)將代入,得.
其中
設(shè),,則,.
.
由已知,,.所以拋物線的方程.
(Ⅱ)由(Ⅰ)知,,.
,同理,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用秦九韶算法求多項(xiàng)式f(x)=2x5+4x4-2x3+8x2+7x+4當(dāng)x=3的值,寫出每一步的計算表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列中,,,且成等差數(shù)列,成等比數(shù)列,。
(Ⅰ)(ⅰ)求證:數(shù)列為等差數(shù)列;
(ⅱ)求數(shù)列的通項(xiàng)公式。
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,證明:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年騎車鍛煉越來越受到人們的喜愛,男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進(jìn)行社會實(shí)踐,對年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否喜歡騎車鍛煉”的問卷,將被調(diào)查人員分為“喜歡騎車”和“不喜歡騎車”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
(1)補(bǔ)全頻率分布直方圖,并的值;
(2)從歲年齡段的“喜歡騎車”中采用分層抽樣法抽取6人參加騎車鍛煉體驗(yàn)活動,求其中選取2名領(lǐng)隊(duì)來自同一組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校體育教研組研發(fā)了一項(xiàng)新的課外活動項(xiàng)目,為了解該項(xiàng)目受歡迎程度,在某班男生女生中各隨機(jī)抽取名學(xué)生進(jìn)行調(diào)研, 統(tǒng)計得到如下列聯(lián)表:
喜歡 | 不喜歡 | 總計 | |
女生 | |||
男生 | |||
總計 |
附:參考公式及數(shù)據(jù)
(1)在喜歡這項(xiàng)課外活動項(xiàng)目的學(xué)生中任選人,求選到男生的概率;
(2)根據(jù)題目要求,完成列聯(lián)表,并判斷是否有的把握認(rèn)為“喜歡該活動項(xiàng)目與性別有關(guān)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其指標(biāo)值來衡量,其指標(biāo)值越大表明質(zhì)量越好,且指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標(biāo)值,得到了下面的試驗(yàn)結(jié)果:
配方的頻數(shù)分布表
指標(biāo)值分組 | |||||
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
配方的頻數(shù)分布表
指標(biāo)值分組 | |||||
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(Ⅰ)分別估計用配方,配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(Ⅱ)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(單位:元)與其指標(biāo)值的關(guān)系式為
估計用配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用配方生產(chǎn)的上述產(chǎn)品平均每件的利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),其離心率為。
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右頂點(diǎn)為,直線交于兩點(diǎn)(異于點(diǎn)),若在上,且,,證明直線過定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線截以原點(diǎn)為圓心的圓所得的弦長為。
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點(diǎn),當(dāng)長最小時,求直線的方程;
(3)設(shè)是圓上任意兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn),若直線分別交軸于點(diǎn)和,問是否為定值?若是,請求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中三個年級共有學(xué)生名,各年級男生、女生的人數(shù)如下表:
高一年級 | 高二年級 | 高三年級 | |
男生 | |||
女生 |
已知在高中學(xué)生中隨機(jī)抽取一名同學(xué)時,抽到高三年級女生的概率為.
(Ⅰ)求的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全校抽取名學(xué)生,則在高二年級應(yīng)抽取多少名學(xué)生?
(Ⅲ)已知,求高二年級男生比女生多的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com