【題目】直線(m+2)x-y-3=0與直線(3m-2)x-y+1=0平行,則實(shí)數(shù)m的值是( )
A.1
B.2
C.3
D.不存在

【答案】B
【解析】因?yàn)橹本(m+2)x-y-3=0的斜率為m+2,直線(3m-2)x-y+1=0
的斜率為3m-2,因?yàn)閮芍本平行,所以m+2=3m-2,m=2.
所以答案是:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】編號(hào)1~15的小球共15個(gè),求總體號(hào)碼的平均值,試驗(yàn)者從中抽3個(gè)小球,以它們的平均數(shù)估計(jì)總體平均數(shù),以編號(hào)2為起點(diǎn),用系統(tǒng)抽樣法抽3個(gè)小球,則這3個(gè)球的編號(hào)平均數(shù)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為,某公司每年最多生產(chǎn)80臺(tái)某種型號(hào)的大型計(jì)算機(jī)系統(tǒng),生產(chǎn)臺(tái)()的收入函數(shù)為(單位:萬(wàn)元),其成本函數(shù)為(單位:萬(wàn)元),利潤(rùn)是收入與成本之差.

(1)求利潤(rùn)函數(shù)及邊際利潤(rùn)函數(shù);

(2)該公司生產(chǎn)多少臺(tái)時(shí)獲得的利潤(rùn)最大?

利潤(rùn)函數(shù)與邊際利潤(rùn)函數(shù)是否具有相同的最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若g(x+2)=2x+3,則g(3)的值是( )
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是平行四邊形,平面,,,,,,的中點(diǎn).

1)求證:平面;

2)求證:平面平面;

3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于四種命題的真假判斷正確的是( )

A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同

C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若原命題為a2+b2=0,則ab全為0”,那么以下給出的4個(gè)結(jié)論:

其逆命題為:若a、b全為0,則a2+b2=0

其否命題為:若a2+b20,則a、b全不為0;

其逆否命題為:若a、b全不為0,則a2+b20;

其否定為:若a2+b2=0,則a、b全不為0

其中正確的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,的中點(diǎn).

(1)求證:平面;

(2)若,,求幾何體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),.

(1)求證:為定值;

(2)是否存在平行于軸的定直線被以為直徑的截得的弦長(zhǎng)為定值?如果存在,該直線方程和弦長(zhǎng);如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案