【題目】如圖,在四面體中,已知,,

(1)求證:

(2)若平面平面,且,求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】

試題分析:(1)利用得出的中點(diǎn),連結(jié),則,,得出平面,即可得證;(2)過(guò)于點(diǎn)由平面平面,推出平面,過(guò)于點(diǎn),連接,得出,得證平面,得出從而可得為二面角的平面角,連接,則,,得出,,再由,得出,從而求出,即可求出二面角的余弦值

試題解析:(1)證明:∵,.

.

的中點(diǎn),連結(jié),則,.

又∵,平面,平面,

平面,

.

(2)解:過(guò)于點(diǎn).平面,

又∵平面平面,平面平面,

平面.

過(guò)于點(diǎn),連接.

平面

平面

.

為二面角的平面角.

連接.

.

,

,.

,.

.

∴二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過(guò)100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為元(0).

1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;

2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,設(shè)過(guò)的直線的斜率存在且不為0,直線交橢圓于,兩點(diǎn),若中點(diǎn)為,為原點(diǎn),直線于點(diǎn)

(1)求證:

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓上一動(dòng)點(diǎn),x軸于點(diǎn)D.記滿足的動(dòng)點(diǎn)M的軌跡為Γ.

(1)求軌跡Γ的方程;

(2)已知直線與軌跡Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),射線OG交軌跡Γ于點(diǎn)Q,且.

證明:

AOB的面積S(λ)的解析式,并計(jì)算S(λ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.

1)證明:平面平面

2)若AB=2AE,求異面直線BE與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)組織語(yǔ)文、數(shù)學(xué)學(xué)科能力競(jìng)賽,按照一定比例淘汰后,頒發(fā)一二三等獎(jiǎng).現(xiàn)有某考場(chǎng)的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中數(shù)學(xué)科目成績(jī)?yōu)槎泉?jiǎng)的考生有人.

(Ⅰ)求該考場(chǎng)考生中語(yǔ)文成績(jī)?yōu)橐坏泉?jiǎng)的人數(shù);

(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語(yǔ)文二等獎(jiǎng)的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測(cè)試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;

(Ⅲ)已知本考場(chǎng)的所有考生中,恰有人兩科成績(jī)均為一等獎(jiǎng),在至少一科成績(jī)?yōu)橐坏泉?jiǎng)的考生中,隨機(jī)抽取人進(jìn)行訪談,求兩人兩科成績(jī)均為一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對(duì)生活有益

認(rèn)為共享產(chǎn)品對(duì)生活無(wú)益

總計(jì)

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對(duì)生活無(wú)益的人員中隨機(jī)抽取人,再?gòu)?/span>人中隨機(jī)抽取人贈(zèng)送超市購(gòu)物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案