已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為(       )
A.-1<a<2B.-3<a<6 C.a(chǎn)<-1或a>2 D.a(chǎn)<-3或a>6
D  

試題分析:因為f(x)=x3+ax2+(a+6)x+1有極大值和極小值,所以方程由不等實根,即,解得a<-3或a>6
,故選D。
點評:典型題,利用導(dǎo)數(shù)求函數(shù)的極值,是高考常見題目。求極值的步驟:計算導(dǎo)數(shù)、求駐點、討論駐點附近導(dǎo)數(shù)的正負、確定極值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),則該函數(shù)曲線在處的切線方程是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則的大小關(guān)系為( )
A.          B.
C.           D的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點在曲線上,為曲線在點處的切線的傾斜角,則取值范圍(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心;且“拐點”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),請回答問題:
若函數(shù)
      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,為常數(shù),),且這兩函數(shù)的圖像有公共點,并在該公共點處的切線相同.
(Ⅰ)求實數(shù)的值;
(Ⅱ)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)連續(xù)函數(shù),則當(dāng)時,定積分的符號(   )
A.一定是正的
B.一定是負的
C.當(dāng)時是正的,當(dāng)時是負的
D.以上結(jié)論都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線上切點為的切線方程是( )
A.B.
C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案