(本小題滿分14分)

已知在[-1,0]和[0,2]上有相反的單調(diào)性.

(Ⅰ)求c的值;

(Ⅱ)若的圖象上在兩點處的切線都與y軸垂直,且函數(shù)f(x)在區(qū)間[m,n]上存在零點,求實數(shù)b的取值范圍;

(Ⅲ)若函數(shù)f(x)在[0,2]和[4,5]上有相反的單調(diào)性,在f(x)的圖象上是否存在一點M,使得f(x)在點M的切線斜率為2b?若存在,求出M點坐標;若不存在,請說明理由.

 

【答案】

 

(Ⅰ)c=0

(Ⅱ)

(Ⅲ)存在這樣點M,坐標為(2,-10)

【解析】解:(Ⅰ)………………………………1分

在[-1,0]和[0,2]上有相反的單調(diào)性,

知x=0是的一個極值點. ………………………………………………2分

,得c=0. ………………………………………………………………3分

(Ⅱ)令,得

……………………………………………………4分

的圖象上在兩點、處的切線都與y軸垂直,

的極值點. ………………………………………………………5分

……………………………………………………………6分

在[0,]上存在零點.

…………………………………………………………7分

………………………………………………………………………8分

(Ⅲ)由(Ⅱ),知由

在[0,2]和[4,5]上有相反的單調(diào)性,

在[0,2]和[4,5]上有相反的符號,……………………………………9分

…………………………………………………………………………10分

假設(shè)存在點使得在M處切線斜率為2b,

……………………………………………11分

………………………………………………………12分

故存在這樣點M,坐標為(2,-10). ………………………………………………14分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案