【題目】以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立坐標(biāo)系,兩個坐標(biāo)系取相同的單位長度.已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(1)求曲線的直角坐標(biāo)方程
(2)設(shè)直線與曲線相交于兩點,時,求的值.
【答案】(1)y2=4x;(2)45°或135°.
【解析】
(1)由曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,兩邊同乘ρ結(jié)合,即可;
(2)由直線的參數(shù)方程觀察得直線過定點(1,0),用點斜式設(shè)直線方程聯(lián)立曲線C方程,用弦長公式求出弦長,列方程求出直線斜率,然后解出.
(1)∵曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,
∴ρ2sin2θ=4ρcosθ,
∵ρsinθ=y,ρcosθ=x,
∴曲線C的直角坐標(biāo)方程為y2=4x.
(2)∵直線l的參數(shù)方程為參數(shù),0<a<π),
∴tanα=,直線過(1,0),
設(shè)l的方程為y=k(x﹣1),
代入曲線C:y2=4x,消去y,
得k2x2﹣(2k2+4)x+k2=0,
設(shè)A(x1,y1),B(x2,y2),
則 ,x1x2=1,
∵|AB|=8.
∴=8,
解得k=±1,
當(dāng)k=1時,α=45°;
當(dāng)k=﹣1時,α=135°.
∴α的值為45°或135°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知它們在處的切線互相平行.
(1)求的值;
(2)若函數(shù),且方程有且僅有四個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)恰有3個零點,則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】A
【解析】,在上單調(diào)遞減.若,則在上遞增,那么零點個數(shù)至多有一個,不符合題意,故.故需當(dāng)時,且,使得第一段有一個零點,故.對于第二段, ,故需在區(qū)間有兩個零點, ,故在上遞增,在上遞減,所以,解得.綜上所述,
【點睛】本小題主要考查函數(shù)的圖象與性質(zhì),考查含有參數(shù)的分段函數(shù)零點問題的求解策略,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,極值,最值等基本問題.其中用到了多種方法,首先對于第一段函數(shù)的分析利用了分離常數(shù)法,且直接看出函數(shù)的單調(diào)性.第二段函數(shù)利用的是導(dǎo)數(shù)來研究圖像與性質(zhì).
【題型】單選題
【結(jié)束】
13
【題目】設(shè), 滿足約束條件,則的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時, ,當(dāng)時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時, ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時, ;當(dāng)時, .
①當(dāng)時, ,即,這時, ;
②當(dāng)時, ,即,這時, .
綜上, 在上的最大值為:當(dāng)時, ;
當(dāng)時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項是D.數(shù)列的最大項是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項是D.數(shù)列的最大項是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ (a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)討論函數(shù)f(x)的極值;
(3)求證:ln(n+1)> (n∈N*).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com