(本小題共14分)如圖,在三棱錐中,底面
,點(diǎn),分別在棱上,且(Ⅰ)求證:平面;(Ⅱ)當(dāng)為的中點(diǎn)時,求與平面所成的角的大;(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.
(Ⅱ).
【解法1】本題主要考查直線和平面垂直、直線與平面所成的角、二面角等基礎(chǔ)知識,考查空間想象能力、運(yùn)算能力和推理論證能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又,∴AC⊥BC.∴BC⊥平面PAC.
(Ⅱ)∵D為PB的中點(diǎn),DE//BC,
∴,又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足為點(diǎn)E.
∴∠DAE是AD與平面PAC所成的角,∵PA⊥底面ABC,
∴PA⊥AB,又PA=AB,∴△ABP為等腰直角三角形,
∴,∴在Rt△ABC中,,∴.∴在Rt△ADE中,,∴與平面所成的角的大小.
(Ⅲ)∵DE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP為二面角的平面角,∵PA⊥底面ABC,∴PA⊥AC,∴.∴在棱PC上存在一點(diǎn)E,使得AE⊥PC,這時,故存在點(diǎn)E使得二面角是直二面角.
【解法2】如圖,以A為原煤點(diǎn)建立空間直角坐標(biāo)系,設(shè),由已知可得
.
(Ⅰ)∵,∴,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.
(Ⅱ)∵D為PB的中點(diǎn),DE//BC,∴E為PC的中點(diǎn),
∴,∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足為點(diǎn)E.∴∠DAE是AD與平面PAC所成的角,∵,
∴.∴與平面所成的角的大小.
(Ⅲ)同解法1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年北京卷理)(本小題共14分)
如圖,在中,,斜邊.可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點(diǎn)的斜邊上.
(I)求證:平面平面;
(II)當(dāng)為的中點(diǎn)時,求異面直線與所成角的大;
(III)求與平面所成角的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年北京卷文)(本小題共14分)
如圖,在中,,斜邊.可以通過以直線為軸旋轉(zhuǎn)得到,且二面角的直二面角.是的中點(diǎn).
(I)求證:平面平面;
(II)求異面直線與所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共14分)如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市豐臺區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別是CC1,AB的中點(diǎn),求證:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市豐臺區(qū)高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點(diǎn).
(Ⅰ)求證:CN⊥AB1;
(Ⅱ)求證:CN //平面AB1M.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com