如圖所示,給出下列條件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③=;
④AC2=AD·AB.
其中能夠單獨(dú)判定△ABC∽△ACD的個(gè)數(shù)為
A.1 B.2 C.3 D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,與圓相切于點(diǎn),直線交圓于兩點(diǎn),弦垂直于.則下面結(jié)論中,錯(cuò)誤的結(jié)論是( )
A.∽ | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖甲,四邊形是等腰梯形,.由4個(gè)這樣的等腰梯形可以拼出圖乙所示的平行四邊形,則四邊形中度數(shù)為 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線與曲線(參數(shù))交于A、B兩點(diǎn),
(1)求證:;
(2)求的外接圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,D、E分別是△ABC的邊AB、AC上的點(diǎn),DE∥BC,且=2,那么△ADE與四邊形DBCE的面積比是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在△ABC中,AD⊥BC于D,下列條件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)=;
(4)AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有
A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,已知⊙O的直徑與弦AC的夾角為30°,過C點(diǎn)的切線PC與AB的延長線交于P,PC=5,則⊙O的半徑為
A. | B. |
C.10 | D.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足為D.若BC=m,∠B=α,則AD的長為
A.m sin2α B.m cos2α
C.m sin αcos α D.m sin αtan α
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com