(本題滿分12分)
定義:若一個(gè)數(shù)列中的每一項(xiàng)都是另一個(gè)數(shù)列中的項(xiàng),則稱這個(gè)數(shù)列是另一個(gè)數(shù)列的子數(shù)列。已知是等差數(shù)列,是公比為的等比數(shù)列,,,記為數(shù)列的前項(xiàng)和.
(Ⅰ)若(是大于的正整數(shù)),求證:;
(Ⅱ)若(是某個(gè)正整數(shù)),求證:是整數(shù),且數(shù)列是數(shù)列的子數(shù)列.
(本題滿分12分)
(1)設(shè)等差數(shù)列的公差為,則由題設(shè)得,,且.
由得,所以,
.
故等式成立.
(2)(ⅰ)證明為整數(shù):
由得,即,
移項(xiàng)得.
因,,得,故為整數(shù).
(ⅱ)證明數(shù)列中的每一項(xiàng)都是數(shù)列中的項(xiàng):
設(shè)是數(shù)列中的任一項(xiàng),只要討論的情形.
令,即,
得.
因,當(dāng)時(shí),,為或,則為或;
而,否則,矛盾.
當(dāng)時(shí),為正整數(shù),所以為正整數(shù),從而.
故數(shù)列中的每一項(xiàng)都是數(shù)列中的項(xiàng).即數(shù)列是數(shù)列的子數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com