在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有6個紅球和4個白球的袋中無放回地取出2個球,當兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達的概率.
分析:(1)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是從袋中10個球中摸出2個,每種條件的中獎的情況分為兩種,2個球都是紅色和兩個球都是白球,寫出事件數(shù),得到概率.
(2)本題是一個幾何概型,用(x,y)表示每次試驗的結果,試驗發(fā)生包含的所有可能結果為Ω={(x,y)|0≤x≤40,20≤y≤60};甲比乙提前到達的可能結果為A={(x,y)|x<y,0≤x≤40,20≤y≤60}.做出對應圖形的面積,得到概率.
解答:精英家教網(wǎng)解:(1)由題意知本題是一個等可能事件的概率,
試驗發(fā)生包含的事件是從袋中10個球中摸出2個,試驗的結果共有
10×9
2
=45
(種).
滿足條件的中獎的情況分為兩種:
(i)2個球都是紅色,包含的基本事件數(shù)為
6×5
2
=15
;
(ii)2個球都是白色,包含的基本事件數(shù)為
4×3
2
=6

∴中獎這個事件包含的基本事件數(shù)為15+6=21.
∴中獎概率為
21
45
=
7
15

(2)設兩人到達的時間分別為9點到10點之間的x分鐘、y分鐘.
用(x,y)表示每次試驗的結果,則所有可能結果為Ω={(x,y)|0≤x≤40,20≤y≤60};
記甲比乙提前到達為事件A,則事件A的可能結果為A={(x,y)|x<y,0≤x≤40,20≤y≤60}.
如圖所示,試驗全部結果構成區(qū)域Ω為正方形ABCD.而事件A所構成區(qū)域是正方形內的陰影部分.
根據(jù)幾何概型公式,得到P(A)=
S陰影
S正方形
=
402-
1
2
×202
402
=
7
8

∴甲比乙提前到達的概率為
7
8
點評:古典概型和幾何概型是我們學習的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆四川省成都外國語學校高二下學期期中考試數(shù)學試卷(解析版) 題型:選擇題

在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎. 若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,則甲比乙提前到達的概率為(     )

A.              B.                C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省通化市梅河口五中高一(下)第一次月考數(shù)學試卷(解析版) 題型:解答題

在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有6個紅球和4個白球的袋中無放回地取出2個球,當兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考數(shù)學必做100題(必修3)(解析版) 題型:解答題

在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有6個紅球和4個白球的袋中無放回地取出2個球,當兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達的概率.

查看答案和解析>>

同步練習冊答案