設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且a3=4,S2=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(2n-1)an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為Tn
(1)設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>),
∵a3=4,S2=3,
a1q2=4
a1+a1q=3
,
解得
q=2
a1=1
,或
q=-
2
3
a1=9
(舍),
an=2n-1
(2)由(1)知bn=(2n-1)an=(2n-1)•2n-1,
∴Tn=1+3×2+5×22+7×23+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=2+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,②
錯位相減,①-②,得
-Tn=-1+6+23+24+25+…+2n-(2n-1)×2n
=5+
23(1-2n-2)
1-2
-(2n-1)×2n
=5-8+2n+1-n×2n+1+2n
=-3-(2n-3)•2n
∴Tn=3+(2n-3)•2n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知遞增的等比數(shù)列{an}的前三項(xiàng)之積為512,且這三項(xiàng)分別依次減去1、3、9后又成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=
1
a1
+
2
a2
+
3
a3
+…+
n
an
,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=-6×210,點(diǎn)(n,2a+1-an)在直線y=211x上,設(shè)bn=an+1-an+t,數(shù)列{bn}是等比數(shù)列.
(1)求出實(shí)數(shù)t;(2)令cn=|log2bn|,問從第幾項(xiàng)開始,數(shù)列{cn}中連續(xù)20項(xiàng)之和為100?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)程序框圖,將輸出的x,y值依次分別記為x1,x2,…,x2013;y1,y2,…,y2013
(Ⅰ)寫出數(shù)列{xn}的遞推公式,求{xn}的通項(xiàng)公式;
(Ⅱ)寫出數(shù)列{yn}的遞推公式,求{yn}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{xn+yn}的前n項(xiàng)和Sn(n≤2013).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3
(Ⅱ)求數(shù)列{an}的通項(xiàng)an;
(Ⅲ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}滿足對任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an2
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{
1
anan+2
}的前n項(xiàng)和為Sn,不等式Sn
1
3
loga(1-a)對任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a3=6,a4+a6=20
(1)求通項(xiàng)an;
(2)設(shè){bn-an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知不等式x2-2x-3<0的整數(shù)解由小到大構(gòu)成數(shù)列{an}前三項(xiàng),若數(shù)列{an+2a2}的前n項(xiàng)和為Sn,則Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn=
n+n2
2k-1
(n∈N*,k是與n無關(guān)的正整數(shù)).
(1)求數(shù)列{an}的通項(xiàng)公式,并證明數(shù)列{an}是等差數(shù)列;
(2)設(shè)數(shù)列{an}滿足不等式:|a1-1|+|a2-1|+…|a2k-1-1|+|a2k-1|≤6,求所有這樣的k的值.

查看答案和解析>>

同步練習(xí)冊答案