空間四邊形ABCD中,若AB=AD=AC=CB=CD=BD,則AC與BD所成角為(  )
分析:先取AC中點E,連接BE,DE,根據(jù)AB=AD=AC=CB=CD=BD,可得AC垂直于BE,也垂直于DE;進(jìn)而得AC垂直于平面BDE,即可得到結(jié)論.
解答:解:取AC中點E,連接BE,DE
因為:AB=AD=AC=CB=CD=BD
那么AC垂直于BE,也垂直于DE
所以AC垂直于平面BDE,
因此AC垂直于BD
故選D.
點評:本題主要考查異面直線所成的角的求法.在解決立體幾何問題時,一般見到等腰三角形,常作輔作線是底邊的中線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點.
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點,EF=
2
,求AD與BC所成角的大小( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形ABCD中,AB、BC、CD的中點分別是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么異面直線BD和PR所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD中,AB=CD,且AB與CD成60°角,E、F分別為AC,BD的中點,則EF與AB所成角的度數(shù)為
60°或30°
60°或30°

查看答案和解析>>

同步練習(xí)冊答案