.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是線段PD上的一點(不包括端點).

(1)求證:BC⊥平面PAC;

(2)求異面直線AC與PD所成的角的余弦值

(3)試確定點M的位置,使直線MA與平面PCD所成角的正弦值為

 

 

 

 

 

 

 

 

 

 

 

【答案】

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在四棱錐P-ABCD中,底面ABCD是∠DAB=60°,且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD.
(1)若G為AD邊的中點,求證:BG⊥平面PAD;
(2)求二面角A-BC-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE;
(3)求二面角A-PD-C的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC.PA=AB=BC,點E在棱PB上,且PE=2EB.
(Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求二面角A-EC-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
(1)若AB=AD=a,直線PB與CD所成角為45°,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大;
(2)若E為線段PC上一點,試確定E點的位置,使得平面EBD垂直于平面ABCD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=1,設(shè)點CG到平面PAB的距離為d1,點B到平面PAC的距離為d2,則有( 。

查看答案和解析>>

同步練習冊答案