定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù),對于下列命題:
①函數(shù)f(x)是以T=2為周期的函數(shù);
②函數(shù)f(x)的圖象關于點(1,0)對稱;
③函數(shù)f(x)的圖象關于直線x=2對稱;
④函數(shù)f(x)的最大值為f(2);
⑤f(2011)=0.
其中正確結(jié)論的序號為( 。
A、①③⑤B、②③⑤C、②③④D、①④⑤
分析:由題意定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,說明該函數(shù)的周期為T=4,又有函數(shù)f(x+1)為奇函數(shù),說明函數(shù)f(x)應該有對稱中心(1,0)
解答:解:∵定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,即:f(x+2)=-f(x)對于一切x都成立,式子中的x被x+2代替得到:f(x+4)=-f(x+2)=f(x),有函數(shù)的周期的定義可以得到:函數(shù)f(x)的周期T=4,所以①錯;
  又∵函數(shù)f(x+1)為奇函數(shù),即函數(shù)f(x)向左平移一個單位以后關于(0,0)對稱,
∴平移之前的圖象應該關于(1,0)對稱,故②正確;
∵f(x+2)=-f(x)且f(x+1)=y為奇函數(shù),
f(x+2)=-f(x)
f(-x+1)=-f(x+1)
?
f(x+3)=-f(x+1)
f(-x+1)=-f(x+1)
?f(x+3)=f(-x+1)?函數(shù)f(x)有對稱軸x=2,所以③正確;
對于⑤由于f(1)=0,所以f(2011)=f(502×4+3)=f(3)=-f(1)=0,故⑤正確.
故選B
點評:此題考查了函數(shù)的周期定義及利用定義求函數(shù)的周期,還考查了函數(shù)的對稱及與圖象的平移變換,還考查了復合函數(shù)的奇函數(shù)的定義式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是(  )

查看答案和解析>>

同步練習冊答案