已知函數(shù)
(1)若a=-4,求函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)記函數(shù)g(x)=x2f′(x),若g(x)的最小值是,求f(x)的解析式.
【答案】分析:(1)將a=-4代入函數(shù)的解析式,先求函數(shù)的定義域,求出函數(shù)的導(dǎo)函數(shù),分析導(dǎo)函數(shù)符號(hào)在不同區(qū)間上的取值,根據(jù)導(dǎo)函數(shù)符號(hào)與原函數(shù)的單調(diào)性之間的關(guān)系可得結(jié)論;
(2)函數(shù)f(x)在[1,+∞)上單調(diào)遞增,f′(x)≥0在[1,+∞)上恒成立,即a≥在[1,+∞)上恒成立,構(gòu)造函數(shù)h(x)=并求出其最小值,可得實(shí)數(shù)a的取值范圍;
(3)g(x)=x2f′(x)=2x3+ax-2的最小值是,由此構(gòu)造關(guān)于a的方程,解方程求出a值,可得f(x)的解析式.
解答:解:(1)當(dāng)a=-4時(shí),,(x>0)
==
令f′(x)=0,則x=
∵x∈(0,)時(shí),f′(x)<0,∵當(dāng)x∈(,+∞)時(shí),f′(x)>0,
∴(0,)為函數(shù)的單調(diào)遞減區(qū)間,
∴(,+∞)為函數(shù)的單調(diào)遞增區(qū)間;
(2)∵f′(x)=
若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,
則f′(x)≥0在[1,+∞)上恒成立
即2x3+ax-2≥0在[1,+∞)上恒成立
即a≥在[1,+∞)上恒成立
令h(x)=,則h′(x)=<0恒成立
故h(x)=在[1,+∞)上單調(diào)遞減
當(dāng)x=1時(shí),h(x)取最大值0
故a≥0,即實(shí)數(shù)a的取值范圍為[0,+∞)
(3)g(x)=x2f′(x)=2x3+ax-2
則g′(x)=6x2+a,
當(dāng)a≥0時(shí),g′(x)≥0恒成立
此時(shí)g(x)在定義域(0,+∞)上無(wú)最小值
當(dāng)a<0時(shí),令g′(x)=6x2+a=0
則x=
∵x∈(0,)時(shí),f′(x)<0,∵當(dāng)x∈(,+∞)時(shí),f′(x)>0,
∴(0,)為函數(shù)g(x)的單調(diào)遞減區(qū)間,
∴(,+∞)為函數(shù)g(x)的單調(diào)遞增區(qū)間;
當(dāng)x=時(shí),g(x)的最小值g()==,
解得a=-

點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)解析式的求解及常用方法,其中熟練掌握導(dǎo)函數(shù)符號(hào)與原函數(shù)的單調(diào)性之間的關(guān)系,并又此分析函數(shù)的單調(diào)區(qū)間和極值點(diǎn)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年湖南卷理)已知函數(shù)

(1)若a>0,則的定義域是           ;

(2) 若在區(qū)間上是減函數(shù),則實(shí)數(shù)a的取值范圍是             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(湖南卷理14)已知函數(shù)

(1)若a>0,則的定義域是           ;

(2) 若在區(qū)間上是減函數(shù),則實(shí)數(shù)a的取值范圍是             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年天津市薊縣一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若a=-4,求函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)記函數(shù)g(x)=x2f′(x),若g(x)的最小值是,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)

(1)若a>0,則f(x)的定義域是             

(2)若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a 的取值范圍是                

 

查看答案和解析>>

同步練習(xí)冊(cè)答案