【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相應 x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.
【答案】
(1)解:∵f (x)=x2﹣x+b,∴f (log2a)=(log2a)2﹣loga+b=b,
∴l(xiāng)og2a=1,∴a=2.
又∵log2f(a)=2,f(a)=4.∴a2﹣a+b=4,∴b=2.
(2)解:由(1)得f (x)=x2﹣x+2
∴f (log2x)=(log2x)2﹣log2x+2=(log2x﹣ )2+ ,
∴當log2x= ,即x= 時,f (log2x)有最小值 .
(3)解:由題意知: ,
解得 ,
∴ ,
∴0<x<1
【解析】(1)代入利用對數(shù)的運算性質即可得出.(2)利用二次函數(shù)與對數(shù)函數(shù)的單調性即可得出.(3)由題意知: ,利用一元二次不等式的解法、對數(shù)函數(shù)的單調性即可得出.
【考點精析】根據題目的已知條件,利用二次函數(shù)的性質和對數(shù)的運算性質的相關知識可以得到問題的答案,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減;①加法:②減法:③數(shù)乘:④⑤.
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x),f(0)≠0,f(1)=2,當x>0,f(x)>1,且對任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求證:對任意x∈R,都有f(x)>0.
(3)若f(x)在R上為增函數(shù),解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是直線與橢圓的一個公共點, 分別為該橢圓的左右焦點,設取得最小值時橢圓為.
(1)求橢圓的標準方程及離心率;
(2)已知為橢圓上關于軸對稱的兩點, 是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值;如果為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于x∈R,[x]表示不超過x的最整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },則A中所有元素的和為( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(a﹣1)(ax﹣a﹣x)(0<a<1).
(1)判斷f(x的奇偶性;
(2)用定義證明f(x)為R上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=4,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍是( 。
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點在平面內.
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設二面角的大小為,求的值;
(Ⅲ)求點到面的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com