△ABC的三個頂點都在雙曲線上,一邊的兩個端點是B(0,6)和C(0,-6),另兩邊斜率的乘積是,求雙曲線的方程.

雙曲線的方程為-=1.


解析:

設雙曲線的方程為-=1(a>0,b>0),

依題意將點B的坐標代入方程可得a=6,

設A(x0,y0)(x0≠0),則有-=1,①

·=.②

由①②消去y0,得=,x0≠0,∴b2=81.

故所求雙曲線的方程為-=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Rt△ABC的三個頂點都在拋物線y2=2px(p>0)上,且斜邊AB∥y軸,則斜邊上的高等于
2p
2p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•楊浦區(qū)一模)橢圓T的中心為坐標原點O,右焦點為F(2,0),且橢圓T過點E(2,
2
).△ABC的三個頂點都在橢圓T上,設三條邊的中點分別為M,N,P.
(1)求橢圓T的方程;
(2)設△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
1
k1
+
1
k2
+
1
k3
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Rt△ABC的三個頂點都在半徑為13的球面上,若球心為O,Rt△ABC兩直角邊的長分別為5和12,則三棱錐O-ABC的體積為
65
3
65
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓
x2
a2
+y2=1(a>1)
上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為
27
8
,則實數(shù)a的值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知拋物線y2=2px(p>0),Rt△ABC的三個頂點都在拋物線上,且斜邊AB∥y軸,則斜邊上的高為( 。

查看答案和解析>>

同步練習冊答案