已知橢圓E:數(shù)學(xué)公式的左、右焦點分別為F1、F2,上、下頂點分別為B1、B2,四邊形B1F1B2F2的一個內(nèi)角等于數(shù)學(xué)公式,橢圓過點P(1,數(shù)學(xué)公式).
(1)求橢圓E的方程;
(2)直線l的斜率等于橢圓E的離心率,且交橢圓于A、B兩點,直線PA和PB分別交x軸于點M、N,求證:|PM|=|PN|.

解:(1)由b>,
,
,
設(shè)所求橢圓方程為,
把點P(1,)代入,得b2=3,a2=4,
∴橢圓方程為
(2),離心率,
設(shè)直線l的方程為,
代入橢圓方程,整理得x2+mx+m2-3=0,
∴x1+x2=-m,x1x2=m2-3,
要證|PM|=|PN|,只需證直線PA的斜率k1與直線PB的斜率k2互為相反數(shù),
k1+k2=
∵(2y1-3)(x2-1)+(2y2-3)(x1-1)
=(x1+2m-3)(x2-1)+(x2+2m-3)(x1-1)
=2x1x2+(2m-4)(x1+x2)+6-4m
=2(m2-3)+(2m-4)(-m)+6-4m=0
所以,k1+k2=0,
因此|PM|=|PN|.
分析:(1)由b>,知,所以,設(shè)所求橢圓方程為,把點P(1,)代入,能求出橢圓方程.
(2),離心率,設(shè)直線l的方程為,代入橢圓方程,得x2+mx+m2-3=0,所以x1+x2=-m,x1x2=m2-3,要證|PM|=|PN|,只需證直線PA的斜率k1與直線PB的斜率k2互為相反數(shù).
點評:通過幾何量的轉(zhuǎn)化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關(guān)系處理,考查學(xué)生的運算能力.通過向量與幾何問題的綜合,考查學(xué)生分析轉(zhuǎn)化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市高三第二次模擬考試數(shù)學(xué)試題 題型:解答題

在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點分別為、

上、下頂點分別為.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓

關(guān)于直線對稱.

(1)求橢圓E的離心率;

(2)判斷直線與圓的位置關(guān)系,并說明理由;

(3)若圓的面積為,求圓的方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如圖,已知橢圓E的左、右頂點分別為,上、下頂點分別為.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.

(1)求橢圓E的離心率;

(2)判斷直線與圓的位置關(guān)系,并說明理由;

(3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

在平面直角坐標(biāo)系中,如圖,已知橢圓E的左、右頂點分別為、

上、下頂點分別為、.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓

關(guān)于直線對稱.

(1)求橢圓E的離心率;

(2)判斷直線與圓的位置關(guān)系,并說明理由;

(3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京九中高三(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓E:的左、右頂點分別為A1、A2,上、下頂點分別為B1、B2.設(shè)直線A1B1的傾斜角的正弦值為,圓C與以線段OA2為直徑的圓關(guān)于直線A1B1對稱.

(1)求橢圓E的離心率;
(2)判斷直線A1B1與圓C的位置關(guān)系,并說明理由;
(3)若圓C的面積為π,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案