設(shè){an}為等差數(shù)列,公差d=-2,Sn為其前n項(xiàng)和.若S10=S11,則a1=
20
20
分析:由等差數(shù)列的前10項(xiàng)的和等于前11項(xiàng)的和可知,第11項(xiàng)的值為0,然后根據(jù)等差數(shù)列的通項(xiàng)公式,利用首項(xiàng)和公差d表示出第11項(xiàng),讓其等于0列出關(guān)于首項(xiàng)的方程,求出方程的解即可得到首項(xiàng)的值.
解答:解:由S10=S11,
得到a1+a2+…+a10=a1+a2+…+a10+a11,即a11=0,
∴a11=a1+(11-1)d=a1-2(11-1)=0,
解得:a1=20.
故答案為:20
點(diǎn)評(píng):此題考查了等差數(shù)列的前n項(xiàng)和公式,以及等差數(shù)列的通項(xiàng)公式,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an為等差數(shù)列,bn為等比數(shù)列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求數(shù)列cn的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè){an}為等差數(shù)列,公差d=-2,sn為其前n項(xiàng)和,若s10=s11,則a1=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等差數(shù)列,則下列數(shù)列中,成等差數(shù)列的個(gè)數(shù)為( 。
①{an2}、趝pan}、踸pan+q}、躿nan}(p、q為非零常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S7=7,S15=75.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=C an(注釋:bn等于C的an次方),(其中C為常數(shù),且C≠0,n∈N*),求證:數(shù)列{bn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等差數(shù)列,a1>0,a6+a7>0,a6•a7<0則使Sn>0成立的最大的n為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案