設(shè)平面向量,其中記“使得成立的”為事件A,則事件A發(fā)生的概率為(   )
A.B.C.D.
C

試題分析:由,即.由于,故事件A包含的基本事件為(2,1)和(3,4),共2個. 又基本事件的總數(shù)為16,故所求的概率為. 故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市公租房的房源位于三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(1)恰有2人申請片區(qū)房源的概率;
(2)申請的房源所在片區(qū)的個數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·課標(biāo)全國卷Ⅰ]從1,2,3,4中任取2個不同的數(shù),則取出的2個數(shù)之差的絕對值為2的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌

 
 

 
首次出現(xiàn)故障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤(萬元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中取出4個,則取出的編號互不相同的概率              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有2個紅球,2個藍球,1個白球,從中一次取出2個球,則取出的球顏色相同的概率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,則它的涂漆面數(shù)為2的概率(  )
 
A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個盒子中裝有標(biāo)號為1,2,3,4,5的5個球,同時選取兩個球,則兩個球上的數(shù)字為相鄰整數(shù)的概率為____________.

查看答案和解析>>

同步練習(xí)冊答案