設函數(shù)的定義域為E,值域為F.
(1)若E={1,2},判斷實數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.
(1);(2);(3).

試題分析:(1)將定義域的兩個值代入求出值域,并化簡,判定元素與集合的關(guān)系;
(2)令,解出值,根據(jù)集合元素的互異性,求出值.
(3)先根據(jù)判定函數(shù)的單調(diào)性,然后討論時,定義域的端點和值域的端點的對應關(guān)系問題,從而列出方程組求解.
試題解析:解:(1)∵,∴當x=1時,f(x)=0;當x=2時,f(x)=,
∴F={0,}.
∵λ=lg22+lg2lg5+lg5﹣16=lg2(lg2+lg5)+lg5﹣=lg2+lg5﹣=lg10﹣=
∴λ∈F. (5分)
(2)令f(a)=0,即,a=±1,取a=﹣1;
令f(a)=,即,a=±2,取a=﹣2,
故a=﹣1或﹣2. (9分)
(3)∵是偶函數(shù),且f'(x)=>0,
則函數(shù)f(x)在(﹣∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù).
∵x≠0,∴由題意可知:或0<
,則有,即
整理得m2+3m+10=0,此時方程組無解;
若0<,則有,即,
∴m,n為方程x2﹣3x+1=0,的兩個根.∵0<,∴m>n>0,
∴m=,n=.(16分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),曲線在點處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)對任意的恒有成立.
(1)記如果為奇函數(shù),求b,c滿足的條件;
(2)當b=0時,記)上為增函數(shù),求c的取值范圍;
(3)證明:當時,成立;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在R上可導的函數(shù)f(x)的圖像如圖所示,則關(guān)于x的不等式x·f′(x)<0的解集為(  )
A.(-∞,-1)∪(0,1)
B.(-1,0)∪(1,+∞)
C.(-2,-1)∪(1,2)
D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義域為(0,+),的導函數(shù),且滿足,則不等式的解集是(   )
A.(0,1)B.(1,+)C.(1,2)D.(2,+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)則滿足的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在△ABC中,角A,B,C所對的邊長分別為ab,c,且滿足csinA=acosC,則sinA+sinB的最大值是(  )
A.1B.C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)為奇函數(shù),且對定義域內(nèi)的任意x都有.當時,,給出以下4個結(jié)論:①函數(shù)的圖象關(guān)于點(k,0)(kZ)成中心對稱;②函數(shù)是以2為周期的周期函數(shù);③當時,;④函數(shù)在(k,k+1)(kZ)上單調(diào)遞增,則結(jié)論正確的序號是.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知有( 。
A.最大值B.最小值C.最大值1D.最小值1

查看答案和解析>>

同步練習冊答案