【題目】已知函數(shù).

1)若曲線與直線處相切.

①求的值;

②求證:當(dāng)時,;

2)當(dāng)時,關(guān)于的不等式有解,求實數(shù)的取值范圍.

【答案】1)①②見解析(2

【解析】

1)①求出導(dǎo)函數(shù),由可求得,再由可求得,從而得;②引入函數(shù),利用導(dǎo)數(shù)求函數(shù)的最小值(需二次求導(dǎo)確定),確定最小值是,從而證得不等式成立;

(2)不等式分離參數(shù)得,原題等價于時,有解.求出的最小值即可得,為此先證明不等式,仍然構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與最值得出結(jié)論.應(yīng)用剛證的不等式可得結(jié)論.

解:(1)①因為,所以.

因為曲線與直線處相切,

所以,所以.

所以,所以.

又切點在直線上,所以,

所以,所以

由①知,可設(shè),

,

當(dāng)時,,當(dāng)時,,

所以上單調(diào)遞減,在上單調(diào)遞增,

,所以

所以存在,使得,

所以當(dāng)時,,當(dāng)時,

所以上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.

因為,所以,

,當(dāng)且僅當(dāng)時取等號,

所以當(dāng)時,,

故當(dāng)時,

(3)先證. 構(gòu)造函數(shù),則.

故當(dāng)時,,上遞增,當(dāng)時,,上遞減,

所以,即

又當(dāng),且時,等價于

故原題等價于時,有解.

因為(當(dāng)時取等號),

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,國家為了鼓勵高校畢業(yè)生自主創(chuàng)業(yè),出臺了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動就業(yè).某高校畢業(yè)生小李自主創(chuàng)業(yè)從事海鮮的批發(fā)銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當(dāng)天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經(jīng)營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數(shù)分布條形圖.

1)若小李一天購進(jìn)12箱基圍蝦.

①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天的銷售量(單位:箱,)的函數(shù)解析式;

②以這150天記錄的日銷售量的頻率作為概率,求當(dāng)天的利潤不低于1900元的概率;

2)以上述樣本數(shù)據(jù)作為決策的依據(jù),他計劃今后每天購進(jìn)基圍蝦的箱數(shù)相同,并在進(jìn)貨量為11箱,12箱中選擇其一,試幫他確定進(jìn)貨的方案,以使其所獲的日平均利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=Asinωx+B的部分圖象如圖所示,其中A0,ω0,|φ|

(Ⅰ)求函數(shù)yfx)解析式;

(Ⅱ)求x[0]時,函數(shù)yfx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,過作斜率為的直線兩點,以線段為直徑的圓.當(dāng)時,圓的半徑為2.

1)求的方程;

2)已知點,對任意的斜率,圓上是否總存在點滿足,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團(tuán)隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內(nèi),否則派下一個人.個人中只要有一人解密正確,則認(rèn)為該團(tuán)隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

求該團(tuán)隊挑戰(zhàn)成功的概率;

該團(tuán)隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團(tuán)隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結(jié)論:

平面

;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某病毒研究所為了研究溫度對某種病毒的影響,在溫度t(℃)逐漸升高時,連續(xù)測20次病毒的活性指標(biāo)值y,實驗數(shù)據(jù)處理后得到下面的散點圖,將第114組數(shù)據(jù)定為A組,第1520組數(shù)據(jù)定為B組.

(Ⅰ)某研究員準(zhǔn)備直接根據(jù)全部20組數(shù)據(jù)用線性回歸模型擬合yt的關(guān)系,你認(rèn)為是否合理?請從統(tǒng)計學(xué)的角度簡要說明理由.

(Ⅱ)若根據(jù)A組數(shù)據(jù)得到回歸模型,根據(jù)B組數(shù)據(jù)得到回歸模型,以活性指標(biāo)值大于5為標(biāo)準(zhǔn),估計這種病毒適宜生存的溫度范圍(結(jié)果精確到0.1).

(Ⅲ)根據(jù)實驗數(shù)據(jù)計算可得:A組中活性指標(biāo)值的平均數(shù),方差B組中活性指標(biāo)值的平均數(shù),方差.請根據(jù)以上數(shù)據(jù)計算全部20組活性指標(biāo)值的平均數(shù)和方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線交于M,拋物線C的焦點為F,且.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)點Q是拋物線C上的動點,點DEy軸上,圓內(nèi)切于三角形,求三角形的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案