(本題滿分14分)
如圖,在四棱錐中,底面為直角梯形,,垂直于底面,分別為的中點(diǎn)。
(1) 求四棱錐的體積;(2)求證:;(3)求截面的面積。
(1) 2 (3)
(1)解:由,得底面直角梯形的面積
,
由底面,得四棱錐的高,
所以四棱錐的體積。 …… 4分
(2)證明:因?yàn)?img width=19 height=19 src="http://thumb.zyjl.cn/pic1/1899/sx/102/167702.gif">是的中點(diǎn),, 所以。 …… 5分
由底面,得, ………… 6分
又,即,
平面,所以 , ………… 8分
平面,
。 ………… 10分
(3)由分別為的中點(diǎn),得,且,
又,故,
由(2)得平面,又平面,故,
四邊形是直角梯形,
在中,,,
截面的面積。 …… 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com