給出下面類(lèi)比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”,類(lèi)比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”,類(lèi)比推出,“若a,b,c,d∈Q,則a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,則a-b>0⇒a>b”,類(lèi)比推出“若a,b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”,類(lèi)比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類(lèi)比正確的為(  )
A.①②B.①④C.①②③D.②③④
A
對(duì)于③,“若a,b∈C,則a-b>0⇒a>b”是錯(cuò)誤的,如a=2+i,b=1+i,則a-b=1>0,但2+i>1+i不正確;對(duì)于④,“若z∈C,則|z|<1⇒-1<z<1”是錯(cuò)誤的,如y=i,|y|=<1,但-1<i<1是不成立的.故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

輸入p=0.8,執(zhí)行程序框圖,則輸出的n值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將演繹推理:“上是減函數(shù)”恢復(fù)成完全的三段論,其中大前提是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是(  )
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對(duì)四位自然數(shù)的一種交換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù)m,再減去它的反序數(shù)n(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無(wú)論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行k次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù)t(這個(gè)數(shù)稱(chēng)為Kaprekar變換的核).通過(guò)研究10進(jìn)制四位數(shù)2014可得Kaprekar變換的核為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)的三邊長(zhǎng)分別為的面積為,內(nèi)切圓半徑為,則;類(lèi)比這個(gè)結(jié)論可知:四面體的四個(gè)面的面積分別為,內(nèi)切球的半徑為,四面體的體積為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下面是按照一定規(guī)律畫(huà)出的一列“樹(shù)型”圖:

設(shè)第個(gè)圖有個(gè)樹(shù)枝,則之間的關(guān)系是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:.
由以上兩式,可以類(lèi)比得到:__________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀(guān)察等式:,.照此規(guī)律,對(duì)于一般的角,有等式           .

查看答案和解析>>

同步練習(xí)冊(cè)答案