已知橢圓,的右焦點為F,上頂點為A,P為C1上任一點,圓心在y軸上的圓C2與斜率為的直線切于點B,且AF∥。
(1)求圓的方程及橢圓的離心率。
(2)過P作圓C2的切線PE,PG,若的最小值為,求橢圓的方程。
科目:高中數(shù)學 來源:2012-2013學年山東省高三上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)
已知橢圓:的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年山東省濟南市高三一模數(shù)學理卷 題型:解答題
((本小題滿分12分)
已知橢圓:的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
已知橢圓:的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,動點,以O(shè)M為直徑的圓的圓心是.
(I)求橢圓的方程C的方程.
(II)若點N在圓上,且,過N作直徑OM的垂線NP,垂足為P,求證:直線NP恒過右焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題18分)已知橢圓C:的右焦點為B(1,0),右準線與x軸的交點為A(5,0),過點A作直線交橢圓C于兩個不同的點P、Q.
(1)求橢圓C的方程;
(2)求直線斜率的取值范圍;
(3)是否存在直線,使得,若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com