設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=x-a.若不存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
[-3,6]
[-3,6]
分析:當(dāng)x>a時,g(x)>0恒成立,顯然不存在x0∈(a,+∞),使得f(x0)<0與g(x0)<0同時成立,當(dāng)x≤a時,則需f(x)≥0在(-∞,a]上恒成立,只需f(x)在(-∞,a]上的最小值大于或等于零即可,利用二次函數(shù)的圖象性質(zhì)求最小值并解不等式即可得a的取值范圍
解答:解:①若x≤a,則g(x)≤0,此時若不存在x0∈(-∞,a],使得f(x0)<0與g(x0)<0同時成立,需f(x)≥0在(-∞,a]上恒成立,
即x2-ax+a+3≥0在(-∞,a]上恒成立,
a>0
f(
a
2
)≥0
a≤0
f(a)≥0
,即
a>0
-
a2
4
+a+3≥0
a≤0
a+3≥0

解得:-3≤a≤6
②若x>a,則g(x)>0恒成立,顯然不存在x0∈(a,+∞),使得f(x0)<0與g(x0)<0同時成立,此時a∈R
綜上所述,若不存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,實數(shù)a的取值范圍是[-3,6]
故答案為[-3,6]
點評:本題主要考查了二次函數(shù)和一次函數(shù)的圖象和性質(zhì),不等式恒成立和能成立問題的解法,分類討論的思想方法和轉(zhuǎn)化化歸的思想方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當(dāng)m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊答案