如圖,BC是Rt△ABC的斜邊,AP⊥平面ABC,連接PB、PC,作PD⊥BC于D,連接AD,則圖中共有直角三角形______個(gè).
∵AP⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
又PD⊥BC于D,連接AD,PD∩PA=A,
∴BC⊥平面PAD,AD?平面PAD,
∴BC⊥AD;
又BC是Rt△ABC的斜邊,
∴∠BAC為直角,
∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.
故答案為:8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖所示,PA、PO分別是平面α的垂線、斜線,AO是PO在平面α內(nèi)的射影,且直線a?α,a⊥PO.求證:a⊥AO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC所在平面外一點(diǎn)P,分別連接PA、PB、PC,則這四個(gè)三角形中直角三角形最多有(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為圓O的直徑,點(diǎn)C為圓O上異于A、B的一點(diǎn),PA⊥平面ABC,點(diǎn)A在PB、PC上的射影分別為點(diǎn)E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點(diǎn)P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求證:EO⊥平面BDF;
(II)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,點(diǎn)M是棱PC的中點(diǎn),PA⊥平面ABCD,AC、BD交于點(diǎn)O.
(1)已知:PA=
2
,求證:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點(diǎn),求證:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在棱錐P-ABCD中,側(cè)面PDC是邊長(zhǎng)為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點(diǎn),
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大。
(3)求證:平面CDM⊥平面PAB.

查看答案和解析>>

同步練習(xí)冊(cè)答案