己知a∈R,函數(shù)
(1)若a=1,求曲線在點(diǎn)(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.
(1)  (2) 當(dāng)時(shí),函數(shù)最小值是;當(dāng)時(shí),函數(shù)最小值是.

試題分析:(1)由導(dǎo)數(shù)的幾何意義可知,曲線在點(diǎn)(2,f (2))處的導(dǎo)數(shù)值為切線的斜率.  ,當(dāng)時(shí),
從而處的切線方程是:  (2)求函數(shù)在閉區(qū)間上的最值,先要根據(jù)導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定其走勢(shì),再比較端點(diǎn)及極值點(diǎn)的函數(shù)值的大小確定最值. 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240442043402446.png" style="vertical-align:middle;" />,所以①當(dāng)時(shí), 時(shí),遞增,時(shí),遞減,最小值是②當(dāng)時(shí), 時(shí),遞減,時(shí),遞增,所以最小值是.
試題解析:(1)當(dāng)時(shí),
                      1
所以          4
處的切線方程是: ..6
(2)
 .8
①當(dāng)時(shí),時(shí),遞增,時(shí),遞減
所以當(dāng) 時(shí),且,
時(shí),遞增,時(shí),遞減    ..10
所以最小值是
②當(dāng)時(shí),且,在時(shí),時(shí),遞減,時(shí),遞增,所以最小值是
綜上所述:當(dāng)時(shí),函數(shù)最小值是;
當(dāng)時(shí),函數(shù)最小值是              13
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
(2)當(dāng)時(shí),函數(shù)在區(qū)間上存在極值,求的最大值.
(參考數(shù)值:自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若,求函數(shù)上的最小值;
(2)若函數(shù)存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)時(shí)有極值10,則的值為(    )
A.-3或4B.4C.-3 D.3或 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)有極值點(diǎn),且,則關(guān)于x的方程的不同實(shí)根個(gè)數(shù)是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P是曲線上任意一點(diǎn),則點(diǎn)P到直線的距離的最小值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某公司規(guī)定:對(duì)于小于或等于150件的訂購合同,每件售價(jià)為200元,對(duì)于多于150件的訂購合同,每超過一件,則每件的售價(jià)比原來減少1元,則使公司的收益最大時(shí)應(yīng)該訂購的合同件數(shù)是(   )
A.150
B.175
C.200
D.225

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是定義在上的兩個(gè)可導(dǎo)函數(shù),若,滿足,則滿足
A.B.為常數(shù)函數(shù)
C.D.為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在用土計(jì)算機(jī)進(jìn)行的數(shù)學(xué)模擬實(shí)驗(yàn)中,一種應(yīng)用微生物跑步參加化學(xué)反應(yīng),其物理速度與時(shí)間的關(guān)系是,則(   。
A.有最小值B.有最大值
C.有最小值D.有最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案