【題目】直線y=x與函數(shù) 的圖象恰有三個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是

【答案】﹣1≤m<2
【解析】解:根據(jù)題意,直線y=x與射線y=2(x>m)有一個(gè)交點(diǎn)A(2,2), 并且與拋物線y=x2+4x+2在(﹣∞,m]上的部分有兩個(gè)交點(diǎn)B、C
,聯(lián)解得B(﹣1,﹣1),C(﹣2,﹣2)
∵拋物線y=x2+4x+2在(﹣∞,m]上的部分必須包含B、C兩點(diǎn),
且點(diǎn)A(2,2)一定在射線y=2(x>m)上,才能使y=f(x)圖象與y=x有3個(gè)交點(diǎn)
∴實(shí)數(shù)m的取值范圍是﹣1≤m<2
所以答案是:﹣1≤m<2

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥CD.

(Ⅰ)若E是PC的中點(diǎn),求證:AP∥平面BDE;
(Ⅱ)求證:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A﹣PB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程 為ρsin(θ+ )=1,圓C的圓心是C(1, ),半徑為1,求:
(1)圓C的極坐標(biāo)方程;
(2)直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)(
A.在區(qū)間[ ]上單調(diào)遞增
B.在區(qū)間[ , ]上單調(diào)遞減
C.在區(qū)間[﹣ ]上單調(diào)遞增
D.在區(qū)間[﹣ , ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)于國家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對(duì)某市年齡在35歲的人調(diào)查,隨機(jī)選取年齡在35歲的100人進(jìn)行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“支持生二孩與性別有關(guān)”?

支持生二孩

不支持生二孩

合計(jì)

男性

女性

合計(jì)

附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.150

0.100

0.050

0.010

0.005

0.001

k0

2.072

2.706

3.841

6.635

7.879

10.828

(Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計(jì)總體,從年齡在35歲人中隨機(jī)抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(﹣1, )是橢圓E: =1(a>b>0)上一點(diǎn),F(xiàn)1 , F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A,B是橢圓E上兩個(gè)動(dòng)點(diǎn),滿足: (0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義1:若函數(shù)f(x)在區(qū)間D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在區(qū)間D上也可導(dǎo),則稱函數(shù)f(x)在區(qū)間D上的存在二階導(dǎo)數(shù),記作f″(x)=[f′(x)]′. 定義2:若函數(shù)f(x)在區(qū)間D上的二階導(dǎo)數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3 x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD 都是邊長為2的等邊三角形,E 是BC的中點(diǎn).
(Ⅰ)證明:平面AE∥平面 PCD;
(Ⅱ)求PAB與平面 PCD 所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )的圖象與x軸交點(diǎn)的橫坐標(biāo),依次構(gòu)成一個(gè)公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則(
A.g(x)是奇函數(shù)
B.g(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
C.g(x)在[ ]上的增函數(shù)
D.當(dāng)x∈[ , ]時(shí),g(x)的值域是[﹣2,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案