【題目】設(shè)正整數(shù)m,n滿足,,,,…,為集各n元子集,且

1)若,滿足;

i)求證:;

ii)求滿足條件的集合的個(gè)數(shù);

2)若中至多有一個(gè)元素,求證:.

【答案】1)(i)證明見(jiàn)解析;(1)(ii;(2)證明見(jiàn)解析

【解析】

1)(i)設(shè)中的個(gè)元素滿足,則得到,得到證明.

(1)(ii)從個(gè)元素中選不相鄰的個(gè)元素,即等價(jià)于將剩余的個(gè)元素排成一排,

形成空,共有種放法,得到答案.

(2)根據(jù)題意知,沒(méi)有相同的二元集合,中所有的二元集合個(gè)數(shù)為,

的二元集合個(gè)數(shù)為,故,得到證明.

1)(i)設(shè)中的個(gè)元素滿足,滿足,

,故.

1)(ii)從個(gè)元素中選不相鄰的個(gè)元素,即等價(jià)于將剩余的個(gè)元素排成一排,

形成空,共有種放法,故共有個(gè)集合.

(2)根據(jù)題意知,沒(méi)有相同的二元集合,中所有的二元集合個(gè)數(shù)為,

的二元集合個(gè)數(shù)為,故,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若曲線處的切線恰與曲線相切,求a的值;

2)不等式對(duì)一切正實(shí)數(shù)x恒成立,求a的取值范圍;

3)已知,若函數(shù)上有且只有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近一段時(shí)間來(lái),由于受非洲豬瘟的影響,各地豬肉價(jià)格普遍上漲,生豬供不應(yīng)求.各大養(yǎng)豬場(chǎng)正面臨巨大挑戰(zhàn).目前各項(xiàng)針對(duì)性政策措施對(duì)于生豬整體產(chǎn)量恢復(fù)、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).現(xiàn)有甲、乙兩個(gè)規(guī)模一致的大型養(yǎng)豬場(chǎng),均養(yǎng)有1萬(wàn)頭豬,將其中重量(kg)在內(nèi)的豬分為三個(gè)成長(zhǎng)階段如下表.

豬生長(zhǎng)的三個(gè)階段

階段

幼年期

成長(zhǎng)期

成年期

重量(Kg

根據(jù)以往經(jīng)驗(yàn),兩個(gè)養(yǎng)豬場(chǎng)豬的體重X均近似服從正態(tài)分布.由于我國(guó)有關(guān)部門(mén)加強(qiáng)對(duì)大型養(yǎng)豬場(chǎng)即將投放市場(chǎng)的成年期豬的監(jiān)控力度,高度重視成年期豬的質(zhì)量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場(chǎng)引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個(gè)養(yǎng)豬場(chǎng)內(nèi)一頭成年期豬能通過(guò)質(zhì)檢合格的概率分別為,.

1)試估算甲養(yǎng)豬場(chǎng)三個(gè)階段豬的數(shù)量;

2)已知甲養(yǎng)豬場(chǎng)出售一頭成年期的豬,若為健康合格的豬,則可盈利600元,若為不合格的豬,則虧損100元;乙養(yǎng)豬場(chǎng)出售一頭成年期的豬,若為健康合格的豬,則可盈利500元,若為不合格的豬,則虧損200.

(ⅰ)記Y為甲、乙養(yǎng)豬場(chǎng)各出售一頭成年期豬所得的總利潤(rùn),求隨機(jī)變量Y的分布列;

(ⅱ)假設(shè)兩養(yǎng)豬場(chǎng)均能把成年期豬售完,求兩養(yǎng)豬場(chǎng)的總利潤(rùn)期望值.

(參考數(shù)據(jù):若,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》有著豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.現(xiàn)擬從這5部專著中選擇2部作為學(xué)生課外興趣拓展參考書(shū)目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時(shí)期專著的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x|xa|aR.

1)當(dāng)f2+f(﹣2)>4時(shí),求a的取值范圍;

2)若a0,x,y∈(﹣,a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器算出09之間取整數(shù)值的隨機(jī)數(shù),指定1,2,34表示命中,5,67,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

1)求實(shí)數(shù)的值;

2時(shí),證明:曲線的圖象恒在切線的上方;

3)證明:不等式:.

查看答案和解析>>

同步練習(xí)冊(cè)答案