已知圓C:x2+y2-2x-4y-4=0.
(I)設(shè)圓C與x軸交于A、B兩個點,求線段AB的長;
(II)過點(4,3)作圓C的切線,求切線的方程.
分析:(I)設(shè)D為AB的中點,由題意可得:|CD|=2,|AC|=3,在直角三角形ACD中,|AD|=
5
,進(jìn)而求出答案.
(II)由題意可得:點(4,3)在圓的外部,所以所求切線有兩條,由圖象可得,過點(4,3)作圓的切線一條為x=4.
設(shè)出另一條切線方程,再由點到直線的距離得到切線方程.
解答:解:(I)由題意可得:圓的標(biāo)準(zhǔn)方程為:(x-1)2+(y-2)2=9,設(shè)D為AB的中點,
因為圓C與x軸相交,
所以|CD|=2,|所以AC|=3,
所以在直角三角形ACD中,|AD|=
5
,
所以|AB|=2|AD|=2
5

(II)由題意可得:點(4,3)在圓的外部,所以所求切線有兩條,
由圖象可得,過點(4,3)作圓的切線一條為x=4.

設(shè)過點(4,3)的圓C的另一條切線為:y-3=k(x-4),
根據(jù)點到直線的距離公式可得:
|k-2+3-4k|
k2+1
,
解得:k=-
4
3
,整理切線方程可得:4x+3y-25-0.
所以圓的切線方程為:x=4或者4x+3y-25-0.
點評:本題主要考查弦長問題與直線與圓的位置關(guān)系,以及點到直線的距離公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當(dāng)r=1時,試用k表示點B的坐標(biāo);
(2)當(dāng)r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=(  )

查看答案和解析>>

同步練習(xí)冊答案