【題目】已知函數(shù),其中為實數(shù).

1)求函數(shù)的單調區(qū)間;

2)若函數(shù)有兩個極值點,求證:.

【答案】1)見解析;2)證明見解析

【解析】

1)計算導數(shù),采用分類討論的方法,,,根據導數(shù)的符號判定原函數(shù)的單調性,可得結果.

2)根據(1)的結論,可得,然后構造新函數(shù),通過導數(shù)研究新函數(shù)的單調性,并計算最值,然后與比較大小,可得結果.

1)函數(shù)的定義域為,

①若,即時,

,此時的單調減區(qū)間為;

②若時,

的兩根為,

,

所以的單調減區(qū)間為,,

單調減區(qū)間為.

③當時,

,

,

此時的單調增區(qū)間為,

單調減區(qū)間為.

2)當時,

函數(shù)有兩個極值點,

,.

要證

只需證.

構造函數(shù),

,

上單調遞增,又,

,且在定義域上不間斷,

由零點存在定理可知:

上唯一實根,且.

上遞減,上遞增,

所以的最小值為.

因為

,,則,

所以恒成立.

所以,

所以,得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)境指數(shù)是“宜居城市”評比的重要指標,根據以下環(huán)境指數(shù)的數(shù)據,對名列前20名的“宜居城市”的環(huán)境指數(shù)進行分組統(tǒng)計,結果如表所示,現(xiàn)從環(huán)境指數(shù)在內的“宜居城市”中隨機抽取2個市進行調研,則至少有1個市的環(huán)境指數(shù)在的概率為( )

組號

分組

頻數(shù)

1

2

2

8

3

7

4

3

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù).

1)討論的單調性;

2)若上恒成立,求實數(shù)的取值范圍;

3)求證:對任意的正整數(shù)都有,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).(

(1)若在區(qū)間上單調遞減,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)對設備進行升級改造,現(xiàn)從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值,若該項指標值落在[20,40)內的產品視為合格品,否則為不合格品,圖1是設備改造前樣本的頻率分布直方圖,表1是設備改造后的頻數(shù)分布表.

表1,設備改造后樣本的頻數(shù)分布表:

質量指標值

頻數(shù)

2

18

48

14

16

2

(1)請估計該企業(yè)在設備改造前的產品質量指標的平均數(shù);

(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在[25,30)內的定為一等品,每件售價240元,質量指標值落在[20,25)[30,35)內的定為二等品,每件售價180元,其它的合格品定為三等品,每件售價120.根據表1的數(shù)據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率,現(xiàn)有一名顧客隨機購買兩件產品,設其支付的費用為X(單位:元),求X得分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義域為R的奇函數(shù),且滿足fx2)=fx+2),當x0,2)時,fx)=lnx2x+1),則方程fx)=0在區(qū)間[0,8]上的解的個數(shù)是(  )

A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)若函數(shù)上的增函數(shù),求的取值范圍;

2)若,求的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù).

1)討論的單調性;

2)若上恒成立,求實數(shù)的取值范圍;

3)求證:對任意的正整數(shù)都有,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 設命題p:函數(shù)y在定義域上為減函數(shù);命題qa,b(0,+∞),當ab=1時,=3.以下說法正確的是(  )

A. pq為真B. pq為真

C. pqD. pq均假

查看答案和解析>>

同步練習冊答案