【題目】已知函數(shù)f(x)=x+x3 , x1 , x2 , x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值(
A.一定大于0
B.等于0
C.一定小于0
D.正負都有可能

【答案】A
【解析】解:f(x)為奇函數(shù),且在R上為增函數(shù); ∵x1+x2>0,x2+x3>0,x3+x1>0;
∴x1>﹣x2 , x2>﹣x3 , x3>﹣x1;
∴f(x1)>﹣f(x2),f(x2)>﹣f(x3),f(x3)>﹣f(x1);
∴f(x1)+f(x2)+f(x3)>﹣[f(x1)+f(x2)+f(x3)];
∴f(x1)+f(x2)+f(x3)>0.
故選:A.
【考點精析】利用函數(shù)單調(diào)性的判斷方法對題目進行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)y=f (x),對任意實數(shù)x,y都有f (x+y)=f (x)+f (y)+2xy.
(1)求f (0)的值;
(2)若f (1)=1,求f (2),f (3),f (4)的值;
(3)在(2)的條件下,猜想f (n)(n∈N*)的表達式并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為y=x+1,則該直線l的傾斜角為(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|0≤x≤6},集合B={x|x2+2x﹣8≤0},則A∪B=(
A.[0,2]
B.[﹣4,2]
C.[0,6]
D.[﹣4,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式2<log2(x+5)<3的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,若集合M={x|﹣3<x<3},N={x|2x+1﹣1≥0},則(UM)∩N=(
A.[3,+∞)
B.(﹣1,3)
C.[﹣1,3)
D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=loga(x﹣3)﹣2過的定點是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】372°所在象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

同步練習冊答案