直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.
分析:聯(lián)立直線方程與拋物線方程,利用消元法得到關于x的一元二次方程,由OA⊥OB得x1x2+y1y2=0,建立關于參數(shù)k,b的關系,消去b可得y=kx-2k=k(x-2),顯然直線恒過(2,0),注意對直線的斜率的討論.
解答:證明:設點A,B的坐標分別為(x
1,y
1),(x
2,y
2)
(I)當直線l有存在斜率時,設直線方程為y=kx+b,顯然k≠0且b≠0.(2分)
聯(lián)立方程得:
消去y得k
2x
2+(2kb-2)x+b
2=0
由題意:
x1x2=y1y2=(kx1+b)(kx2+b)=(5分)
又由OA⊥OB得x
1x
2+y
1y
2=0,(7分)
即
+=0,解得b=0(舍去)或b=-2k(9分)
故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)
(II)當直線l不存在斜率時,設它的方程為x=m,顯然m>0
聯(lián)立方程得:
解得
y=±,即y
1y
2=-2m
又由OA⊥OB得x
1x
2+y
1y
2=0,即m
2-2m=0,解得m=0(舍去)或m=2
可知直線l方程為:x=2,故直線過定點(2,0)
綜合(1)(2)可知,滿足條件的直線過定點(2,0).
點評:本題考查了直線與拋物線的位置關系,以及證明直線恒過定點,屬于基礎題.