如果直線過(guò)雙曲線k的左焦點(diǎn)F和點(diǎn)B(0,b),且與雙曲線左支交于點(diǎn)P,若數(shù)學(xué)公式,那么該雙曲線的離心率e等于________.


分析:先設(shè)出雙曲線方程,則F,B的坐標(biāo)可得,根據(jù)向量條件得出P的坐標(biāo),進(jìn)而將P的坐標(biāo)代入雙曲線方程求得a,c的關(guān)系式,則雙曲線的離心率可得.
解答:設(shè)雙曲線方程為
則F(-c,0),B(0,b)
,∴P(-)將P的坐標(biāo)代入雙曲線方程得:
,即
所以=
故答案為:
點(diǎn)評(píng):本題考查了雙曲線的焦點(diǎn)、虛軸、離心率,考查了向量的坐標(biāo)運(yùn)算,考查了方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為
5
2
,過(guò)點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),一條漸近線為y=
1
2
x
,過(guò)點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果直線過(guò)雙曲線k的左焦點(diǎn)F和點(diǎn)B(0,b),且與雙曲線左支交于點(diǎn)P,若
FP
=
1
2
PB
,那么該雙曲線的離心率e等于
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線數(shù)學(xué)公式的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為數(shù)學(xué)公式,過(guò)點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量數(shù)學(xué)公式垂直?如果存在,求k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案