【題目】下列各組中的函數(shù)f(x),g(x)表示同一函數(shù)的是( )
A.f(x)=x,g(x)=
B.f(x)=x+1,g(x)=
C.f(x)=|x|,g(x)=
D.f(x)=log22x , g(x)=2log2x
【答案】C
【解析】解:A.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?,+∞),所以定義域不同,所以A不是同一函數(shù).
B.f(x)的定義域?yàn)镽,而g(x)= =x+1,(x≠1),則g(x)的定義域?yàn)椋ī仭蓿?)∪(1,+∞),所以定義域不同,所以B不是同一函數(shù).
C.因?yàn)間(x)=|x|,所以?xún)蓚(gè)函數(shù)的定義域和對(duì)應(yīng)法則一致,所以C表示同一函數(shù).
D.f(x))=log22x=x,則f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?,+∞),所以定義域不同,所以D不是同一函數(shù).
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的判斷兩個(gè)函數(shù)是否為同一函數(shù),需要了解只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線(xiàn)A1B與B1C所成的角為60°;
②若M是線(xiàn)段AC1上的動(dòng)點(diǎn),則直線(xiàn)CM與平面BC1D所成角的正弦值的取值范圍是 ;
③若P,Q是線(xiàn)段AC上的動(dòng)點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為 .
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對(duì)任意的正實(shí)數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實(shí)數(shù)m的取值范圍為( )
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)在某段路程中的行駛速率與時(shí)間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說(shuō)明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車(chē)在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車(chē)在行駛這段路程時(shí)里程表讀數(shù)s(km)與時(shí)間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象( )
A.向左移動(dòng) 個(gè)單位
B.向右移動(dòng) 個(gè)單位
C.向左移動(dòng)1個(gè)單位
D.向右移動(dòng)1個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an﹣1﹣an}{n∈N*}是公差為2的等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)記數(shù)列{ }的前n項(xiàng)和為Sn , 求滿(mǎn)足不等式Sn> 的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線(xiàn)l,使l被圓C截得的弦長(zhǎng)AB為直徑的圓過(guò)原點(diǎn),若存在求出直線(xiàn)的方程l,若不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com