已知雙曲線中心在原點(diǎn)且一個焦點(diǎn)為F1(-,0),點(diǎn)P位于該雙曲線上,線段PF1的中點(diǎn)坐標(biāo)為(0,2),則雙曲線的方程是( )
A.-y2=1 | B.x2-=1 |
C.-=1 | D.-=1 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,已知橢圓,雙曲線(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則C2的離心率為( )
A.5 | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知P是雙曲線 的右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,下列命題正確的是( ).
A.雙曲線的焦點(diǎn)到漸近線的距離為; |
B.若,則e的最大值為; |
C.△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為b ; |
D.若∠F1PF2的外角平分線交x軸與M, 則. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)分別為雙曲線的左、右焦點(diǎn),雙曲線上存在一點(diǎn)使得 則該雙曲線的離心率為
A. | B. | C.4 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為( )
A.-=1 | B.+=1 |
C.-=1 | D.+=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線-y2=1的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且滿足|PF1|+|PF2|=2,則△PF1F2的面積為( )
A. | B.1 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知橢圓C:+=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點(diǎn),則實(shí)數(shù)b的取值范圍是( )
A.[1,4) | B.[1,+∞) |
C.[1,4)∪(4,+∞) | D.(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線左、右焦點(diǎn)分別為,若雙曲線右支上存在點(diǎn)P使得,則該雙曲線離心率的取值范圍為( )
A.(0,) | B.(,1) |
C. | D.(,) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com