如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若,求直線l的斜率的取值范圍.
【答案】分析:(1)由已知得,r=2時(shí),可求得M點(diǎn)的坐標(biāo)為(-1,0),設(shè)N(x,y)聯(lián)立方程可解得MN的中點(diǎn)P坐標(biāo);
(2)設(shè)N(x,y)由已知得,先利用圓方程求得M點(diǎn)的坐標(biāo),再設(shè)P(0,b),得:r=b2+1.利用圓的方程與x+1-r=0消去r,即可得出點(diǎn)N的軌跡方程;
(3)設(shè)直線l的方程為y=kx+2,將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量的數(shù)量積公式即可求得k值范圍,從而解決問(wèn)題.
解答:解:(1):由已知得,r=2時(shí),可求得M點(diǎn)的坐標(biāo)為(-1,0),
設(shè)N(x,y)則解得N(1,±2).
所以MN的中點(diǎn)P坐標(biāo)為(0,±1).
(2):設(shè)N(x,y)由已知得,在圓方程中令y=0,求得M點(diǎn)的坐標(biāo)為(1-r,0).
設(shè)P(0,b),則由kCPkmp=-1(或用勾股定理)得:r=b2+1.
,消去r,
又r>1,所以點(diǎn)N的軌跡方程為y2=4x(x≠0).
(3)設(shè)直線l的方程為y=kx+2,M(x1,x2),N(x2,y2),
消去y得k2x2+(4k-4)x+4=0,因?yàn)橹本l與拋物線y2=4x(x>0)相交于兩個(gè)不同的點(diǎn)M,N,
所以△=-32k+16>0,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183751740573849/SYS201310241837517405738019_DA/4.png">,所以(x1-1)(x2-1)+y1y2>0,
所以(k2+1)x1x2+(2k-1)(x1+x2)+5>0,得k2+12k>0,
所以k>0或k<-12,
綜上可得
點(diǎn)評(píng):本題是中檔題,考查動(dòng)點(diǎn)的軌跡方程的求法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若
CE
CF
>0
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓C:x2+y2+10x+10y=0,點(diǎn)A(0,6).
(1)求圓心在直線y=x上,經(jīng)過(guò)點(diǎn)A,且與圓C相切的圓N的方程;
(2)若過(guò)點(diǎn)A的直線m與圓C交于P,Q兩點(diǎn),且圓弧PQ恰為圓C周長(zhǎng)的
14
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過(guò)點(diǎn)(
2
,
6
2
)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年廣東省深圳市寶安中學(xué)、翠園中學(xué)、外國(guó)語(yǔ)學(xué)校高三(上)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若,求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案