【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費(fèi)標(biāo)準(zhǔn)是每車每次不超過兩小時(shí)免費(fèi),超過兩小時(shí)的部分每小時(shí)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲乙兩人相互獨(dú)立租車(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為, ;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為, ;兩人租車時(shí)間都不會(huì)超過四小時(shí).
(1)求出甲、乙所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求隨機(jī)變量的概率分布和期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列函數(shù)的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4]; (2)f(x)=;
(3)f(x)=; (4)f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 平面, ,點(diǎn)為的中點(diǎn),點(diǎn)在棱上移動(dòng).
(1)當(dāng)點(diǎn)為的中點(diǎn)時(shí),試判斷與平面的位置關(guān)系,并說明理由;
(2)求證:無論點(diǎn)在的何處,都有;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出四個(gè)命題
(1)若sin2A=sin2B,則△ABC為等腰三角形;
(2)若sinA=cosB,則△ABC為直角三角形;
(3)若sin2A+sin2B+sin2C<2,則△ABC為鈍角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
以上正確命題的是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a是實(shí)數(shù),函數(shù)f(x)= (x-a).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.
①寫出g(a)的表達(dá)式;
②求a的取值范圍,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各選項(xiàng)中,一定符合上述指標(biāo)的是( )
①平均數(shù)≤3;②標(biāo)準(zhǔn)差S≤2;③平均數(shù)≤3且標(biāo)準(zhǔn)差S≤2;④平均數(shù)≤3且極差小于或等于2;⑤眾數(shù)等于1且極差小于或等于1.
A.①② B.③④
C.③④⑤ D.④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號(hào)).
①y=f(x)的圖象關(guān)于點(diǎn)(2π,0)中心對(duì)稱;
②y=f(x)的圖象關(guān)于直線x=π對(duì)稱;
③f(x)的最大值為;
④f(x)既是奇函數(shù),又是周期函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com