5u如圖,平行四邊形中,,正方形所在的平面和平面垂直,的中點(diǎn),的交點(diǎn).

⑴求證:平面;
⑵求證:平面.
見解析
的交點(diǎn),∴中點(diǎn),又的中點(diǎn),

中,,            
,∴,
又∵
平面                     
⑵平面平面,交線為,

平面,                  

又∵,
                   
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面為矩形,底面,,點(diǎn)在側(cè)棱上,

(I)證明:是側(cè)棱的中點(diǎn);
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PB=BC=,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使面
PAD⊥面ABCD(如圖2)。
(1)證明:平面PAD⊥PCD;
(2)試在棱PB上確定一點(diǎn)M,使截面AMC,把幾何體分成的兩部分;
(3)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 如圖,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分別為AC、AA1的中點(diǎn).點(diǎn)F為棱AB上的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)F為AB的中點(diǎn)時.
(1)求證:EF⊥AC1
(2)求點(diǎn)B1到平面DEF的距離.
(Ⅱ)若二面角A-DF-E的大小為的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐S,,,,。
(1)證明
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,⊿是等邊三角形,∠PAC=∠PBC="90" º.
(1)證明:AB⊥PC;
(2)若,且平面⊥平面,求三棱錐體積.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知四個命題,其中正確的命題是         (   )
①若直線l //平面,則直線l的垂線必平行平面;
②若直線l與平面相交,則有且只有一個平面,經(jīng)過l與平面垂直;
③若一個三棱錐每兩個相鄰側(cè)面所成的角都相等,則這個三棱錐是正三棱錐;
④若四棱柱的任意兩條對角線都相交且互相平分,則這個四棱柱為平行六面體.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖P、Q分別是A1B1、BB1的四等分點(diǎn),M、N分別是D1C1、CC1的中點(diǎn).沿M→N→Q→P截去一部分,截去的幾何體是什么?剩下的幾何體也是嗎?

查看答案和解析>>

同步練習(xí)冊答案