(2013•肇慶二模)已知函數(shù)f(x)=
-x3+ax2+bx,(x<1)
c(ex-1-1),(x≥1)
x=0,x=
2
3
處存在極值.
(1)求實(shí)數(shù)a,b的值;
(2)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
(3)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根的個(gè)數(shù).
分析:(1)當(dāng)x<1時(shí),f′(x)=-3x2+2ax+b,依題意,由
f′(0)=0
f′(
2
3
)=0
可求實(shí)數(shù)a,b的值;
(2)由(1)可求得f(x)=
-x3+x2,(x<1)
c(ex-1-1),(x≥1)
,依題意A,B的橫坐標(biāo)互為相反數(shù),不妨設(shè)A(-t,t3+t2),B(t,f(t)),(t>0).分t<1與t≥1討論,利用∠AOB是直角,
OA
OB
=0,即可求得實(shí)數(shù)c的取值范圍;
(3)由方程f(x)=kx,知kx=
-x3+x2,(x<1)
ex-e,(x≥1)
,可知0一定是方程的根,x≠0,方程等價(jià)于k=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)
,構(gòu)造函數(shù)g(x)=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)
,
分x<1且x≠0與x≥1兩類討論,即可確定f(x)=kx(k∈R)的實(shí)根的個(gè)數(shù).
解答:解(1)當(dāng)x<1時(shí),f′(x)=-3x2+2ax+b.(1分)
因?yàn)楹瘮?shù)f(x)在x=0,x=
2
3
處存在極值,所以
f′(0)=0
f′(
2
3
)=0
解得a=1,b=0.(3分)
(2)由(1)得f(x)=
-x3+x2,(x<1)
c(ex-1-1),(x≥1)
,
根據(jù)條件知A,B的橫坐標(biāo)互為相反數(shù),不妨設(shè)A(-t,t3+t2),B(t,f(t)),(t>0).
若t<1,則f(t)=-t3+t2,
由∠AOB是直角得,
OA
OB
=0,即-t2+(t3+t2)(-t3+t2)=0,
即t4-t2+1=0.此時(shí)無解;                                                    (5分)
若t≥1,則f(t)=c(et-1-1).由于AB的中點(diǎn)在y軸上,且∠AOB是直角,所以B點(diǎn)不可能在x軸上,即t≠1.
OA
OB
=0,即-t2+(t3+t2)•c(et-1-1)=0,得c=
1
(t+1)(et-1-1)

因?yàn)楹瘮?shù)y=(t+1)(et-1-1)在t>1上的值域是(0,+∞),
所以實(shí)數(shù)c的取值范圍是(0,+∞).(7分)
(3)由方程f(x)=kx,知kx=
-x3+x2,(x<1)
ex-e,(x≥1)
,可知0一定是方程的根,(8分)
所以僅就x≠0時(shí)進(jìn)行研究:方程等價(jià)于k=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)
,
構(gòu)造函數(shù)g(x)=
-x2+x,(x<1且x≠0)
ex-e
x
,(x≥1)
,
對(duì)于x<1且x≠0部分,函數(shù)g(x)=-x2+x的圖象是開口向下的拋物線的一部分,
當(dāng)x=
1
2
時(shí)取得最大值
1
4
,其值域是(-∞,0)∪(0,
1
4
);
對(duì)于x≥1部分,函數(shù)g(x)=
ex-e
x
,由g′(x)=
ex(x-1)+e
x2
>0,知函數(shù)g(x)在(1,+∞)上單調(diào)遞增.
所以,①當(dāng)k>
1
4
或k≤0時(shí),方程f(x)=kx有兩個(gè)實(shí)根;
②當(dāng)k=
1
4
時(shí),方程f(x)=kx有三個(gè)實(shí)根;
③當(dāng)0<k<
1
4
時(shí),方程f(x)=kx有四個(gè)實(shí)根.(14分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查根的存在性及根的個(gè)數(shù)判斷,突出分類討論思想、等價(jià)轉(zhuǎn)化思想及創(chuàng)新思維與邏輯思維能力的考查,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)(坐標(biāo)系與參數(shù)方程選做題)
若以直角坐標(biāo)系的x軸的非負(fù)半軸為極軸,曲線l1的極坐標(biāo)系方程為ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直線l2的參數(shù)方程為
x=1-2t
y=2t+2
(t為參數(shù)),則l1與l2的交點(diǎn)A的直角坐標(biāo)是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)定義全集U的子集M的特征函數(shù)為fM(x)=
1,x∈M
0,x∈CUM
,這里?UM表示集合M在全集U中的補(bǔ)集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對(duì)于任意x∈U,都有fM(x)≤fN(x);
②對(duì)于任意x∈U都有fCUM(x)=1-fM(x);
③對(duì)于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對(duì)于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)在等差數(shù)列{an}中,a15=33,a25=66,則a35=
99
99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案