(本小題滿分13分)雙曲線的中心是原點O,它的虛軸長為,相應于焦點F(c,0)(c>0)的準線與x軸交于點A,且|OF|=3|OA|,過點F的直線與雙曲線交于P、Q兩點.
(1)求雙曲線的方程;
(2)若=0,求直線PQ的方程.
= 1
x - -3 = 0或x +-3 = 0
解.(1)由題意,設曲線的方程為= 1(a>0,b>0)
由已知 解得a = ,c = 3所以雙曲線的方程為= 1…(6分)
(2)由(1)知A(1,0),F(xiàn)(3,0),
當直線PQ與x軸垂直時,PQ方程為x =" 3" .此時,≠0,應舍去.
當直線PQ與x軸不垂直時,設直線PQ的方程為y ="k" ( x – 3 ).
由方程組 得
由于過點F的直線與雙曲線交于P、Q兩點,則-2≠0,即k≠,
  由于△=36-4(-2)(9+6)=48(+1)>0即k∈R.
∴k∈R且k≠(*) ………………………(8分)
設P(,),Q(,),則

由直線PQ的方程得= k(-3),= k(-3)
于是=-3)(-3)=[-3(+)+ 9] (3)
 = 0,∴(-1,)·(-1,)= 0
-(+)+ 1 + =" 0    " (4)
由(1)、(2)、(3)、(4)得
= 0
整理得=,∴k = 滿足(*)
∴直線PQ的方程為x - -3 = 0或x +-3 = 0………(13分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知圓和直線
⑴ 證明:不論取何值,直線和圓總相交;
⑵ 當取何值時,圓被直線截得的弦長最短?并求最短的弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示的直觀圖的平面圖形ABCD是
A.任意梯形B.任意四邊形C.平行四邊形D.直角梯形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,直線,,上的兩動點,且,求使得四邊形周長最小時兩點的坐標及此時的最小周長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


將圓上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130736172272.gif" style="vertical-align:middle;" />倍,得到曲線.設直線與曲線相交于、兩點,且,其中是曲線軸正半軸的交點.
(Ⅰ)求曲線的方程;
(Ⅱ)證明:直線的縱截距為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中心在原點,其中一個焦點為(-2,0),且過點(2,3),則該橢圓方程為             ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以下四個關于圓錐曲線的命題中:
①設A、B為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;
③拋物線的焦點坐標是;
④曲線與曲線)有相同的焦點.
其中真命題的序號為____________寫出所有真命題的序號.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)雙曲線的離心率為,右準線為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求m的值.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(3,2),B(-2,7),若直線y=kx-3與線段AB相交,則k的取值范圍為_____________

查看答案和解析>>

同步練習冊答案