已知數(shù)列的首項(xiàng)為,且,則這個(gè)數(shù)列的通項(xiàng)公式為_(kāi)__________

 

【答案】

【解析】

試題分析:根據(jù)題意,由于數(shù)列的首項(xiàng)為,且,則可知

而當(dāng)n=1時(shí)也適合上式,因此可知該數(shù)列的。

考點(diǎn):數(shù)列的遞推式的運(yùn)用

點(diǎn)評(píng):根據(jù)遞推關(guān)系式采用累加法的思想啊你跟求解數(shù)列的通項(xiàng)公式。屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2時(shí),an總是3Sn-4與2-
5
2
Sn-1
的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn
(Ⅲ)設(shè)cn=
3an
4•2n-3n-1an
,Pn是數(shù)列{cn}的前項(xiàng)和,n∈N*,試證明:Pn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市八中高三第二次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)已知數(shù)列的首項(xiàng)為,前項(xiàng)和為,且
(1)求證:數(shù)列成等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北大附中高三2月統(tǒng)練理科數(shù)學(xué) 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱(chēng)是數(shù)列的“保三角形函數(shù)”,.

(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;

(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿(mǎn)足,證明是“三角形”數(shù)列;

(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù),,和數(shù)列1,,()提出一個(gè)正確的命題,并說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿(mǎn)分18分,其中第1小題6分,第2小題6分,第3小題6分)

已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足.

(1) 求數(shù)列的通項(xiàng)公式;

(2) 當(dāng)時(shí),試比較的大小,并說(shuō)明理由;

(3) 試判斷:當(dāng)時(shí),向量是否可能恰為直線(xiàn)的方向向量?請(qǐng)說(shuō)明你的理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案