如圖,海上有兩個小島相距10,船O將保持觀望A島和B島所成的視角為,現(xiàn)從船O上派下一只小艇沿方向駛至處進(jìn)行作業(yè),且.設(shè)。
(1)用分別表示和,并求出的取值范圍;
(2)晚上小艇在處發(fā)出一道強(qiáng)烈的光線照射A島,B島至光線的距離為,求BD的最大值.
(1);,(2)
解析試題分析:(1)在和中,分別用余弦定理AC,AB,然后兩式相加即得的表達(dá)式;兩式相減即得的表達(dá)式,由和確定x的取值范圍.(2)由、和可得到關(guān)于BD的函數(shù)式,然后通過求導(dǎo),求出BD的最大值.
試題解析:解:(1)在中,,,由余弦定理得,,
又,所以 ①,
在中,,
由余弦定理得, ②, 3分
①+②得,①②得,即, 4分
又,所以,即,
又,即,所以; 6分
(2)易知,故, 8分
又,設(shè),所以, 9分
又則在上是增函數(shù),
所以的最大值為,即BD的最大值為10. 12分
(利用調(diào)性定義證明在上是增函數(shù),同樣給滿分;如果直接說出上是增函數(shù),但未給出證明,扣2分.)
考點(diǎn):1.余弦定理;2.函數(shù)的導(dǎo)數(shù)及其導(dǎo)數(shù)性質(zhì)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sincos+sin2 (其中ω>0,0<φ<).其圖象的兩個相鄰對稱中心的距離為,且過點(diǎn).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=,S△ABC=2,角C為銳角.且滿足f=,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,甲船以每小時海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時,乙船位于甲船的北偏西方向的處,此時兩船相距海里,當(dāng)甲船航行分鐘到達(dá)處時,乙船航行到甲船的北偏西方向的處,此時兩船相距海里,問乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,山頂有一座石塔,已知石塔的高度為.
(Ⅰ)若以為觀測點(diǎn),在塔頂處測得地面上一點(diǎn)的俯角為,在塔底處測得處的俯角為,用表示山的高度;
(Ⅱ)若將觀測點(diǎn)選在地面的直線上,其中是塔頂在地面上的射影.已知石塔高度,當(dāng)觀測點(diǎn)在上滿足時看的視角(即)最大,求山的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值時x的集合;
(2)若A是銳角三角形△ABC的內(nèi)角,f(A)=0,b=5,a=7,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com