設(shè)連接雙曲線的四個(gè)頂點(diǎn)組成的四邊形的面積為,連接其四個(gè)焦點(diǎn)組成的四邊形的面積為,則 的最大值是
A.B.C. 1D.2
B

試題分析:根據(jù)題意可知雙曲線的四個(gè)頂點(diǎn)的焦距相等,長半軸和短半軸恰好相反,那么可知因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015154870604.png" style="vertical-align:middle;" />,可知 的最大值是,選B
點(diǎn)評(píng):主要是考查了雙曲線的幾何性質(zhì)的運(yùn)用,以及四邊形的面積的求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為半圓,為半圓直徑,為半圓圓心,且,為線段的中點(diǎn),已知,曲線點(diǎn),動(dòng)點(diǎn)在曲線上運(yùn)動(dòng)且保持的值不變.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線的方程;
(II)過點(diǎn)的直線與曲線交于兩點(diǎn),與所在直線交于點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準(zhǔn)線交于不同的兩點(diǎn)M,N.

(I)若點(diǎn)C的縱坐標(biāo)為2,求
(II)若,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,過橢圓M:右焦點(diǎn)的直線于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程
(1)求曲線C的普通方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點(diǎn)、,過點(diǎn)C的直線與橢圓交于另一點(diǎn)D,并與x軸交于點(diǎn)P,直線AC與直線BD交于點(diǎn)Q.

(I)當(dāng)直線過橢圓右焦點(diǎn)時(shí),求線段CD的長;
(II)當(dāng)點(diǎn)P異于點(diǎn)B時(shí),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的離心率是2,則實(shí)數(shù)k的值是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩焦點(diǎn)是橢圓上一點(diǎn)且的等差中項(xiàng),則此橢圓的標(biāo)準(zhǔn)方程為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn),求弦的長.

查看答案和解析>>

同步練習(xí)冊答案