已知F1,F(xiàn)2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),過(guò)F2作垂直于實(shí)軸的直線(xiàn)PQ交雙曲線(xiàn)于P,Q兩點(diǎn),若∠PF1Q=
π
2
,則雙曲線(xiàn)的離心率e等于( 。
分析:根據(jù)題設(shè)條件我們知道PQ=
2b2
a
,|F1F2|=2c,|QF1|=
b2
a
,因?yàn)椤螾F2Q=90°,則2(
b4
a2
+4c2)=
4b4
a2
,據(jù)此可以推導(dǎo)出雙曲線(xiàn)的離心率.
解答:解:由題意可知通徑|PQ|=
2b2
a
,|F1F2|=2c,|QF1|=
b2
a
,
∵∠PF2Q=90°,∴b4=4a2c2
∵c2=a2+b2,∴c4-6a2c2+a4=0,∴e4-6e2+1=0
∴e2=3+2
2
或e2=3-2
2
(舍去)
∴e=1+
2

故選C.
點(diǎn)評(píng):本題主要考查了雙曲線(xiàn)的簡(jiǎn)單性質(zhì),考查計(jì)算能力.這道題數(shù)量間的關(guān)系比較繁瑣,推導(dǎo)過(guò)程中要多一點(diǎn)耐心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線(xiàn)上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知F1、F2是雙曲數(shù)學(xué)公式的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線(xiàn)上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案