將邊長為米的一塊正方形鐵皮的四角各截去一個大小相同的小正方形,然后將四邊折起做成一個無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少米?方盒的最大容積為多少?

V()=, 即為容積的最大值,此時小正方形的邊長為

解析試題分析:設(shè)小正方形的邊長為x,則盒底的邊長為a-2x,
∴方盒的體積               4分
                   10分
∴函數(shù)V在點x=處取得極大值,由于問題的最大值存在,
∴V()=, 即為容積的最大值,此時小正方形的邊長為.            12分
考點:函數(shù)模型,應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值。
點評:中檔題,作為應(yīng)用問題,往往涉及確定函數(shù)的最值。求最值的方法有,不等式法、導(dǎo)數(shù)法等。實際問題中,當(dāng)駐點個數(shù)只有一個時,其既是極值點也是最值點。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米,/小時,研究表明:當(dāng)時,車流速度v是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時) 可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)行業(yè)協(xié)會預(yù)測:某公司以每噸10萬元的價格銷售某種化工產(chǎn)品,可售出該產(chǎn)品1000 噸,若將該產(chǎn)品每噸的價格上漲%,則銷售量將減少%,且該化工產(chǎn)品每噸的價格上漲幅度不超過%,其中為正常數(shù) 
(1)當(dāng)時,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

周長為20cm的矩形,繞一條邊旋轉(zhuǎn)成一個圓柱,則圓柱體積的最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極小值.
(1)求的值;
(2)若處的切線方程為,求證:當(dāng)時,曲線不可能在直線的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5000(單位:萬元),又在經(jīng)濟學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當(dāng)50<x≤200時,車流速度v與車流密度x滿足,當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.
(Ⅰ) 當(dāng)0<x≤200時,求函數(shù)v(x)的表達(dá)式;
(Ⅱ) 當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到個位,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),及函數(shù)。
關(guān)于的不等式的解集為,其中為正常數(shù)。
(1)求的值;
(2)R如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若,且,求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù),),且數(shù)列是首項為,公差為的等差數(shù)列.
(1) 若,當(dāng)時,求數(shù)列的前項和;                      
(2)設(shè),如果中的每一項恒小于它后面的項,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案