【題目】已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,且(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.
(1)求{an}的通項(xiàng)公式;
(2)記bn=a2n1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 證明:Tn

【答案】
(1)解:(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.

∴[(n+1)an+1﹣nan](an+1+an)=0,∵an+1+an>0,

∴(n+1)an+1﹣nan=0,即 =

∴an= = 1=


(2)解:證明:bn=a2n1a2n+1= =

數(shù)列{bn}的前n項(xiàng)和為T(mén)n= +…+

=

即Tn


【解析】(1)(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.分解因式可得:[(n+1)an+1﹣nan](an+1+an)=0,由an+1+an>0,可得(n+1)an+1﹣nan=0,即 = .利用“累乘求積”方法即可得出.(2)bn=a2n1a2n+1= = .利用裂項(xiàng)求和方法、數(shù)列的單調(diào)性即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),( )是偶函數(shù).

(1)求的值;

(2)設(shè)函數(shù),其中.若函數(shù)的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)ax (a1),

(1)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并證明你的判斷;

(2)a3,求方程f(x)0的正根(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函數(shù)的零點(diǎn);

(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對(duì)稱(chēng)中心為M(x0 , h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=4,直線l:y=x,則圓C上任取一點(diǎn)A到直線l的距離小于1的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2x存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物網(wǎng)站在2017年11月開(kāi)展“全部6折”促銷(xiāo)活動(dòng),在11日當(dāng)天購(gòu)物還可以再享受“每張訂單金額(6折后〕滿(mǎn)300元時(shí)可減免100元”.小淘在11日當(dāng)天欲購(gòu)入原價(jià)48元(單價(jià))的商品共42件,為使花錢(qián)總數(shù)最少,他最少需要下的訂單張數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案